Precalculus

Eleventh Edition

Sullivan

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations. You may wonder if you can learn it all in time. Don't worry-your concerns are normal. This textbook was written with you in mind. If you attend class, work hard, and read and study this text, you will build the knowledge and skills you need to be successful. Here's how you can use the text to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't ... the text has a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class if you do this.

Use the Features

I use many different methods in the classroom to communicate. Those methods, when incorporated into the text, are called "features." The features serve many purposes, from providing timely review of material you learned before (just when you need it) to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this text. Refer to "Prepare for Class," "Practice," and "Review" at the front of the text. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your text.

Please do not hesitate to contact me through Pearson, with any questions, comments, or suggestions for improving this text. I look forward to hearing from you, and good luck with all of your studies.

Best Wishes!
Wichael Sullivan

This page is intentionally left blank

Prepare for Class "Read the Book"

Feature	Description	Benefit	Page
Every Chapter Opener begins with ...			
Chapter-Opening Topic \& Project	Each chapter begins with a discussion of a topic of current interest and ends with a related project.	The project lets you apply what you learned to solve a problem related to the topic.	294
Internet-based Project	The projects allow for the integration of spreadsheet technology that you will need to be a productive member of the workforce.	The projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest.	396
Every Section begins with ...			
LEARNING OBJECTIVES 2	Each section begins with a list of objectives. Objectives also appear in the text where the objective is covered.	These focus your study by emphasizing what's most important and where to find it.	319
Sections contain . .			
PREPARING FOR THIS SECTION	Most sections begin with a list of key concepts to review with page numbers.	Ever forget what you've learned? This feature highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.	315
Now Work the 'Are You Prepared?' Problems	Problems that assess whether you have the prerequisite knowledge for the upcoming section.	Not sure you need the Preparing forThis Section review? Work the 'AreYou Prepared?' problems. If you get one wrong, you'll know exactly what you need to review and where to review it!	315, 326
Now Work PROBLEMS	These follow most examples and direct you to a related exercise.	We learn best by doing. You'll solidify your understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.	322,327
WARNING	Warnings are provided in the text.	These point out common mistakes and help you to avoid them.	349
Exploration and Seeing the Concept	These graphing utility activities foreshadow a concept or solidify a concept just presented.	You will obtain a deeper and more intuitive understanding of theorems and definitions.	310, 335
In Words	These provide alternative descriptions of select definitions and theorems.	Does math ever look foreign to you? This feature translates math into plain English.	332
\langle Calculus	These appear next to information essential for the study of calculus.	Pay attention-if you spend extra time now, you'll do better later!	$\begin{array}{r} 90,299, \\ 322 \end{array}$
SHOWCASE EXAMPLES	These examples provide "how-to" instruction by offering a guided, step-by-step approach to solving a problem.	With each step presented on the left and the mathematics displayed on the right, you can immediately see how each step is used.	261
Model It! Examples and Problems	These examples and problems require you to build a mathematical model from either a verbal description or data. The homework Model It! problems are marked by purple headings.	It is rare for a problem to come in the form "Solve the following equation." Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models to find a solution to the problem.	339, 368
NEW! Need to Review?	These margin notes provide a just-intime reminder of a concept needed now, but covered in an earlier section of the book. Each note is backreferenced to the chapter, section and page where the concept was originally discussed.	Sometimes as you read, you encounter a word or concept you know you've seen before, but don't remember exactly what it means. This feature will point you to where you first learned the word or concept. A quick review now will help you see the connection to what you are learning for the first time and make remembering easier the next time.	308

Practice "Work the Problems"

Feature	Description	Benefit	Page
'Are You Prepared?' Problems	These assess your retention of the prerequisite material you'll need. Answers are given at the end of the section exercises. This feature is related to the Preparing forThis Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	332,340
Concepts and Vocabulary	These short-answer questions, mainly Fill-in-the-Blank, Multiple-Choice and True/False items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	326
Skill Building	Correlated with section examples, these problems provide straightforward practice.	It's important to dig in and develop your skills. These problems provide you with ample opportunity to do so.	326-328
Applications and Extensions	These problems allow you to apply your skills to real-world problems. They also allow you to extend concepts learned in the section.	You will see that the material learned within the section has many uses in everyday life.	329-331
NEW! Challenge Problems	These problems have been added in most sections and appear at the end of the Application and Extensions exercises. They are intended to be thought-provoking, requiring some ingenuity to solve.	Are you a student who likes being challenged? Then the Challenge Problems are for you! Your professor might also choose to assign a challenge problem as a group project. The ability to work with a team is a highly regarded skill in the working world.	331
Explaining Concepts: Discussion and Writing	"Discussion and Writing" problems are colored red. They support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging, but you'll get out what you put in.	331
Retain Your Knowledge	These problems allow you to practice content learned earlier in the course.	Remembering how to solve all the different kinds of problems that you encounter throughout the course is difficult. This practice helps you remember.	331
Now Work PROBLEMS	Many examples refer you to a related homework problem. These related problems are marked by a pencil and orange numbers.	If you get stuck while working problems, look for the closest Now Work problem, and refer to the related example to see if it helps.	324,325
Review Exercises	Every chapter concludes with a comprehensive list of exercises to pratice. Use the list of objectives to determine the objective and examples that correspond to the problems.	Work these problems to ensure that you understand all the skills and concepts of the chapter. Think of it as a comprehensive review of the chapter.	391-394

Review "Study for Quizzes and Tests"

Feature	Description	Benefit	Page
The Chapter Review at the end of each chapter contains . . .			
Things to Know	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most important material in the chapter!	389-390
You Should Be Able to ...	Contains a complete list of objectives by section, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll have mastered the key material. If you get something wrong, go back and work through the objective listed and try again.	390-391
Review Exercises	These provide comprehensive review and practice of key skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems combine exercises from all sections, giving you a comprehensive review in one place.	391-394
Chapter Test	About 15-20 problems that can be taken as a ChapterTest. Be sure to take the ChapterTest under test conditions-no notes!	Be prepared. Take the sample practice test under test conditions. This will get you ready for your instructor's test. If you get a problem wrong, you can watch the ChapterTest Prep Video.	394
Cumulative Review	These problem sets appear at the end of each chapter, beginning with Chapter 2. They combine problems from previous chapters, providing an ongoing cumulative review. When you use them in conjunction with the Retain Your Knowledge problems, you will be ready for the final exam.	These problem sets are really important. Completing them will ensure that you are not forgetting anything as you go. This will go a long way toward keeping you primed for the final exam.	395
Chapter Projects	The Chapter Projects apply to what you've learned in the chapter. Additional projects are available on the Instructor's Resource Center (IRC).	The Chapter Projects give you an opportunity to use what you've learned in the chapter to the opening topic. If your instructor allows, these make excellent opportunities to work in a group, which is often the best way to learn math.	396
Internet-Based Projects	In selected chapters, a Web-based project is given.	These projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest by using the Internet to research and collect data.	396

To the Memory of

 My Mother and Father
Precalculus

Eleventh Edition

Global Edition

Michael Sullivan

Chicago State University

Product Management: Gargi Banerjee and Neelakantan K.K.
Content Strategy: Shabnam Dohutia, Amrita Naskar, Deeptesh Sen
Supplements: Bedasree Das
Digital Studio: Vikram Medepalli and Abhilasha Watsa
Rights and Permissions: Anjali Singh and Ashish Vyas

Cover Photo Credit: Raul Jichici/Shutterstock

Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content.
Pearson Education Limited
KAO Two
KAO Park
Harlow
CM17 9SR
United Kingdom
and Associated Companies throughout the world
Visit us on the World Wide Web at: www.pearsonglobaleditions.com
(C) Pearson Education Limited 2024

The rights of Michael Sullivan to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988 .
Authorized adaptation from the United States edition, entitled Precalculus, 11th edition, ISBN 9780135189405, by Michael Sullivan, published by Pearson Education © 2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC 1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

Attributions of third party content appear on page C-1, which constitutes an extension of this copyright page.
MICROSOFT ${ }^{\circledR}$ AND WINDOWS ${ }^{\circledR}$ ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUNTRIES. SCREEN SHOTS AND ICONS REPRINTED WITH PERMISSION FROM THE MICROSOFT CORPORATION. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

PEARSON, ALWAYS LEARNING, and MYLAB ${ }^{\text {™ }}$ MATH are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this eBook at any time.

ISBN-10: 1-292-44452-5
ISBN-13: 978-1-292-44452-9
eBook ISBN-13: 978-1-292-44447-5

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
123
Typeset by Straive
eBook formatted by B2R Technologies Pvt. Ltd.

Contents

Three Distinct Series 20
The Flagship Series 21
Preface to the Instructor 22
Get the Most Out of MyLab Math 27
Resources for Success 28
Applications Index 30
1 Graphs 37
1.1 The Distance and Midpoint Formulas 38
Use the Distance Formula - Use the Midpoint Formula
1.2 Graphs of Equations in Two Variables; Intercepts; Symmetry 45
Graph Equations by Plotting Points • Find Intercepts from a Graph

- Find Intercepts from an Equation - Test an Equation for Symmetry with Respect to the x-Axis, the y-Axis, and the Origin • Know How to Graph Key Equations
1.3 Lines 56
Calculate and Interpret the Slope of a Line • Graph Lines Given a Point and the Slope • Find the Equation of a Vertical Line • Use the Point-Slope Form of a Line; Identify Horizontal Lines • Use the Slope-Intercept Form of a Line • Find the Equation of a Line Given Two Points • Graph Lines Written in General Form Using Intercepts \bullet Find Equations of Parallel Lines
- Find Equations of Perpendicular Lines
1.4 Circles 71
Write the Standard Form of the Equation of a Circle • Graph a Circle
- Work with the General Form of the Equation of a Circle
Chapter Review 78
Chapter Test 80
Chapter Project 80
2 Functions and Their Graphs 82
2.1 Functions 83
Describe a Relation - Determine Whether a Relation Represents a Function
- Use Function Notation; Find the Value of a Function • Find the Difference Quotient of a Function • Find the Domain of a Function Defined by an Equation • Form the Sum, Difference, Product, and Quotient of Two Functions
2.2 The Graph of a Function 99
Identify the Graph of a Function - Obtain Information from or about the Graph of a Function
2.3 Properties of Functions 109
Identify Even and Odd Functions from a Graph • Identify Even and Odd Functions from an Equation • Use a Graph to Determine Where a Function is Increasing, Decreasing, or Constant • Use a Graph to Locate Local
Maxima and Local Minima • Use a Graph to Locate the Absolute Maximumand the Absolute Minimum • Use a Graphing Utility to Approximate LocalMaxima and Local Minima and to Determine Where a Function Is Increasingor Decreasing • Find the Average Rate of Change of a Function
2.4 Library of Functions; Piecewise-defined Functions 122
Graph the Functions Listed in the Library of Functions • Analyze a Piecewise-defined Function
2.5 Graphing Techniques: Transformations 134
Graph Functions Using Vertical and Horizontal Shifts • Graph Functions Using Compressions and Stretches • Graph Functions Using Reflections about the x-Axis and the y-Axis
2.6 Mathematical Models: Building Functions 147Build and Analyze Functions
Chapter Review 153
Chapter Test 157
Cumulative Review 158
Chapter Projects 158
3 Linear and Quadratic Functions 160
3.1 Properties of Linear Functions and Linear Models 161
Graph Linear Functions • Use Average Rate of Change to Identify Linear Functions • Determine Whether a Linear Function Is Increasing, Decreasing, or Constant • Build Linear Models from Verbal Descriptions
3.2 Building Linear Models from Data 171
Draw and Interpret Scatter Plots • Distinguish between Linear and Nonlinear Relations • Use a Graphing Utility to Find the Line of Best Fit
3.3 Quadratic Functions and Their Properties 179
Graph a Quadratic Function Using Transformations • Identify the Vertex and Axis of Symmetry of a Parabola • Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts • Find a Quadratic Function Given Its Vertex and One Other Point • Find the Maximum or Minimum Value of a Quadratic Function
3.4 Building Quadratic Models from Verbal Descriptions and from Data 192
Build Quadratic Models from Verbal Descriptions • Build Quadratic Models from Data
3.5 Inequalities Involving Quadratic Functions 201
Solve Inequalities Involving a Quadratic Function
Chapter Review 205
Chapter Test 207
Cumulative Review 208
Chapter Projects 209
4 Polynomial and Rational Functions 210
4.1 Polynomial functions 211
Identify Polynomial Functions and Their Degree - Graph Polynomial Functions Using Transformations • Identify the Real Zeros of a Polynomial Function and Their Multiplicity
4.2 Graphing Polynomial Functions; Models 226
Graph a Polynomial Function • Graph a Polynomial Function Using a Graphing Utility • Build Cubic Models from Data
4.3 Properties of Rational Functions 234
Find the Domain of a Rational Function • Find the Vertical Asymptotes of a Rational Function • Find a Horizontal or an Oblique Asymptote of a Rational Function
4.4 The Graph of a Rational Function 245
Graph a Rational Function • Solve Applied Problems Involving Rational Functions
4.5 Polynomial and Rational Inequalities 260
Solve Polynomial Inequalities • Solve Rational Inequalities
4.6 The Real Zeros of a Polynomial function 267
Use the Remainder and Factor Theorems • Use Descartes' Rule of Signs to Determine the Number of Positive and the Number of Negative Real Zeros of a Polynomial Function • Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function • Find the Real Zeros of a Polynomial Function • Solve Polynomial Equations • Use the Theorem for Bounds on Zeros • Use the Intermediate Value Theorem
4.7 Complex Zeros; Fundamental Theorem of Algebra 281
Use the Conjugate Pairs Theorem • Find a Polynomial Function with Specified Zeros • Find the Complex Zeros of a Polynomial Function
Chapter Review 288
Chapter Test 291
Cumulative Review 292
Chapter Projects 293
5 Exponential and Logarithmic Functions 294
5.1 Composite Functions 295
Form a Composite Function • Find the Domain of a Composite Function
5.2 One-to-One Functions; Inverse Functions 303
Determine Whether a Function Is One-to-One • Obtain the Graph of the Inverse Function from the Graph of a One-to-One Function
- Verify an Inverse Function • Find the Inverse of a Function Defined by an Equation
5.3 Exponential Functions 315
Evaluate Exponential Functions • Graph Exponential Functions
- Define the Number $e \bullet$ Solve Exponential Equations
5.4 Logarithmic Functions 332
Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements • Evaluate Logarithmic Expressions - Determine the Domain of a Logarithmic Function - Graph Logarithmic Functions • Solve Logarithmic Equations
5.5 Properties of Logarithms 345
Work with the Properties of Logarithms • Write a Logarithmic Expression as a Sum or Difference of Logarithms • Write a Logarithmic Expression as a Single Logarithm • Evaluate Logarithms Whose Base Is Neither 10 Nor e
5.6 Logarithmic and Exponential Equations 354
Solve Logarithmic Equations • Solve Exponential Equations • Solve Logarithmic and Exponential Equations Using a Graphing Utility
5.7 Financial Models
Determine the Future Value of a Lump Sum of Money • Calculate Effective Rates of Return • Determine the Present Value of a Lump Sum of Money
- Determine the Rate of Interest or the Time Required to Double a Lump Sum of Money361
5.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 371
Model Populations That Obey the Law of Uninhibited Growth • Model Populations That Obey the Law of Uninhibited Decay • Use Newton's Law of Cooling • Use Logistic Models
5.9 Building Exponential, Logarithmic, and Logistic Models from Data 382
Build an Exponential Model from Data • Build a Logarithmic Model from Data • Build a Logistic Model from Data
Chapter Review 389
Chapter Test 394
Cumulative Review 395
Chapter Projects 396
Trigonometric Functions 397
6.1 Angles, Arc Length, and Circular Motion 398
Angles and Degree Measure - Convert between Decimal and Degree, Minute, Second Measures for Angles • Find the Length of an Arc of a Circle - Convert from Degrees to Radians and from Radians to Degrees \bullet Find the Area of a Sector of a Circle \bullet Find the Linear Speed of an Object Traveling in Circular Motion
6.2 Trigonometric Functions: Unit Circle Approach 411
Find the Exact Values of the Trigonometric Functions Using a Point on the Unit Circle • Find the Exact Values of the Trigonometric Functions of Quadrantal Angles • Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{4}=45^{\circ} \bullet$ Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{6}=30^{\circ}$ and $\frac{\pi}{3}=60^{\circ} \bullet$ Find the Exact Values of the Trigonometric Functions for Integer Multiples of $\frac{\pi}{6}=30^{\circ}, \frac{\pi}{4}=45^{\circ}$, and $\frac{\pi}{3}=60^{\circ} \bullet$ Use a Calculator to Approximate the Value of a Trigonometric Function • Use a Circle of Radius r to Evaluate the Trigonometric Functions
6.3 Properties of the Trigonometric Functions 428
Determine the Domain and the Range of the Trigonometric Functions - Determine the Period of the Trigonometric Functions - Determine the Signs of the Trigonometric Functions in a Given Quadrant • Find the Values of the Trigonometric Functions Using Fundamental Identities \bullet Find the Exact Values of the Trigonometric Functions of an Angle Given One of the Functions and the Quadrant of the Angle - Use Even-Odd Properties to Find the Exact Values of the Trigonometric Functions
6.4 Graphs of the Sine and Cosine Functions 443
Graph the Sine Function $y=\sin x$ and Functions of the Form $y=A \sin (\omega x) \bullet$ Graph the Cosine Function $y=\cos x$ and Functions of the Form $y=A \cos (\omega x)$ - Determine the Amplitude and Period of Sinusoidal Functions • Graph Sinusoidal Functions Using Key Points - Find an Equation for a Sinusoidal Graph
6.5 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 458
Graph the Tangent Function $y=\tan x$ and the Cotangent Function $y=\cot x \bullet$ Graph Functions of the Form $y=A \tan (\omega x)+B$ and $y=A \cot (\omega x)+B \cdot$ Graph the Cosecant Function $y=\csc x$ and the Secant Function $y=\sec x \bullet$ Graph Functions of the Form $y=A \csc (\omega x)+B$ and $y=A \sec (\omega x)+B$
6.6 Phase Shift; Sinusoidal Curve Fitting 465
Graph Sinusoidal Functions of the Form $y=A \sin (\omega x-\phi)+B$
- Build Sinusoidal Models from Data
Chapter Review 477
Chapter Test 482
Cumulative Review 483
Chapter Projects 484
7 Analytic Trigonometry 485
7.1 The Inverse Sine, Cosine, and Tangent Functions 486
Define the Inverse Sine Function - Find the Value of an Inverse SineFunction - Define the Inverse Cosine Function • Find the Value of anInverse Cosine Function • Define the Inverse Tangent Function \bullet Find theValue of an Inverse Tangent Function • Use Properties of Inverse Functionsto Find Exact Values of Certain Composite Functions • Find the InverseFunction of a Trigonometric Function • Solve Equations Involving InverseTrigonometric Functions
7.2 The Inverse Trigonometric Functions (Continued) 499
Define the Inverse Secant, Cosecant, and Cotangent Functions • Find the Value of Inverse Secant, Cosecant, and Cotangent Functions •Find the Exact Value of Composite Functions Involving the Inverse Trigonometric Functions • Write a Trigonometric Expression as an Algebraic Expression
7.3 Trigonometric Equations
Solve Equations Involving a Single Trigonometric Function • Solve Trigonometric Equations Using a Calculator • Solve Trigonometric Equations Quadratic in Form • Solve Trigonometric Equations Using Fundamental Identities • Solve Trigonometric Equations Using a Graphing Utility505
7.4 Trigonometric Identities 515
Use Algebra to Simplify Trigonometric Expressions • Establish Identities
7.5 Sum and Difference Formulas 523
Use Sum and Difference Formulas to Find Exact Values • Use Sum and Difference Formulas to Establish Identities • Use Sum and Difference Formulas Involving Inverse Trigonometric Functions • Solve Trigonometric Equations Linear in Sine and Cosine
7.6 Double-angle and Half-angle Formulas 536
Use Double-angle Formulas to Find Exact Values • Use Double-angle Formulas to Establish Identities • Use Half-angle Formulas to Find Exact Values
7.7 Product-to-Sum and Sum-to-Product Formulas 547
Express Products as Sums • Express Sums as Products
Chapter Review 551
Chapter Test 554
Cumulative Review 555
Chapter Projects 556
Applications of Trigonometric Functions557
8.1 Right Triangle Trigonometry; Applications 558
Find the Value of Trigonometric Functions of Acute Angles Using Right Triangles • Use the Complementary Angle Theorem • Solve Right Triangles
- Solve Applied Problems
8.2 The Law of Sines 571
Solve SAA or ASA Triangles • Solve SSA Triangles • Solve Applied Problems
8.3 The Law of Cosines 582
Solve SAS Triangles • Solve SSS Triangles • Solve Applied Problems
8.4 Area of a Triangle 589
Find the Area of SAS Triangles • Find the Area of SSS Triangles
8.5 Simple Harmonic Motion; Damped Motion; Combining Waves 595
Build a Model for an Object in Simple Harmonic Motion • Analyze Simple Harmonic Motion • Analyze an Object in Damped Motion • Graph the Sum of Two Functions
Chapter Review 605
Chapter Test 608
Cumulative Review 609
Chapter Projects 609
9 Polar Coordinates; Vectors 611
9.1 Polar Coordinates 612
Plot Points Using Polar Coordinates - Convert from Polar Coordinates to Rectangular Coordinates • Convert from Rectangular Coordinates to Polar Coordinates \bullet Transform Equations between Polar and Rectangular Forms
9.2 Polar Equations and Graphs 621
Identify and Graph Polar Equations by Converting to Rectangular Equations • Test Polar Equations for Symmetry • Graph Polar Equations by Plotting Points
9.3 The Complex Plane; De Moivre's Theorem 636
Plot Points in the Complex Plane - Convert a Complex Number between Rectangular Form and Polar Form or Exponential Form • Find Products and Quotients of Complex Numbers • Use De Moivre's Theorem - Find Complex Roots
9.4 Vectors 645
Graph Vectors • Find a Position Vector • Add and Subtract Vectors Algebraically • Find a Scalar Multiple and the Magnitude of a Vector
- Find a Unit Vector • Find a Vector from Its Direction and Magnitude - Model with Vectors
9.5 The Dot Product 660
Find the Dot Product of Two Vectors • Find the Angle between Two Vectors
- Determine Whether Two Vectors Are Parallel • Determine Whether Two Vectors Are Orthogonal • Decompose a Vector into Two Orthogonal Vectors
- Compute Work
9.6 Vectors in Space
Find the Distance between Two Points in Space • Find Position Vectors in Space • Perform Operations on Vectors • Find the Dot Product • Find the Angle between Two Vectors \bullet Find the Direction Angles of a Vector667
9.7 The Cross Product 677
Find the Cross Product of Two Vectors • Know Algebraic Properties of the Cross Product •Know Geometric Properties of the Cross Product • Find a Vector Orthogonal to Two Given Vectors • Find the Area of a Parallelogram
Chapter Review 683
Chapter Test 686
Cumulative Review 687
Chapter Projects 687
10 Analytic Geometry 688
10.1 Conics 689
Know the Names of the Conics
10.2 The Parabola 690
Analyze Parabolas with Vertex at the Origin • Analyze Parabolas with Vertex at $(h, k) \bullet$ Solve Applied Problems Involving Parabolas
10.3 The Ellipse 699
Analyze Ellipses with Center at the Origin • Analyze Ellipses with Center at $(h, k) \bullet$ Solve Applied Problems Involving Ellipses
10.4 The Hyperbola 709
Analyze Hyperbolas with Center at the Origin • Find the Asymptotes of a Hyperbola • Analyze Hyperbolas with Center at $(h, k) \bullet$ Solve Applied Problems Involving Hyperbolas
10.5 Rotation of Axes; General Form of a Conic 722
Identify a Conic • Use a Rotation of Axes to Transform Equations - Analyze an Equation Using a Rotation of Axes • Identify Conics without Rotating the Axes
10.6 Polar Equations of Conics 730
Analyze and Graph Polar Equations of Conics • Convert the Polar Equation of a Conic to a Rectangular Equation
10.7 Plane Curves and Parametric Equations 737
Graph Parametric Equations • Find a Rectangular Equation for a Plane Curve Defined Parametrically • Use Time as a Parameter in Parametric Equations • Find Parametric Equations for Plane Curves Defined by Rectangular Equations
Chapter Review 750
Chapter Test 752
Cumulative Review 753
Chapter Projects 753
11 Systems of Equations and Inequalities 755
11.1 Systems of Linear Equations: Substitution and Elimination 756
Solve Systems of Equations by Substitution - Solve Systems of Equations by Elimination • Identify Inconsistent Systems of Equations Containing Two Variables • Express the Solution of a System of Dependent Equations Containing Two Variables • Solve Systems of Three Equations Containing Three Variables • Identify Inconsistent Systems of Equations Containing Three Variables • Express the Solution of a System of Dependent Equations Containing Three Variables
11.2 Systems of Linear Equations: Matrices 770Write the Augmented Matrix of a System of Linear Equations- Write the System of Equations from the Augmented Matrix- Perform Row Operations on a Matrix • Solve a System of LinearEquations Using Matrices
11.3 Systems of Linear Equations: Determinants 784
Evaluate 2 by 2 Determinants • Use Cramer's Rule to Solve a System of Two Equations Containing Two Variables • Evaluate 3 by 3 Determinants - Use Cramer's Rule to Solve a System of Three Equations Containing Three Variables • Know Properties of Determinants
11.4 Matrix Algebra 795
Find the Sum and Difference of Two Matrices • Find Scalar Multiples of a Matrix • Find the Product of Two Matrices • Find the Inverse of a Matrix
- Solve a System of Linear Equations Using an Inverse Matrix
11.5 Partial Fraction Decomposition 812
Decompose $\frac{P}{Q}$ Where Q Has Only Nonrepeated Linear Factors
- Decompose $\frac{P}{Q}$ Where Q Has Repeated Linear Factors • Decompose $\frac{P}{Q}$ Where Q Has a Nonrepeated Irreducible Quadratic Factor \bullet Decompose $\frac{P}{Q}$
Where Q Has a Repeated Irreducible Quadratic Factor
11.6 Systems of Nonlinear Equations 821
Solve a System of Nonlinear Equations Using Substitution • Solve a System of Nonlinear Equations Using Elimination
11.7 Systems of Inequalities 830
Graph an Inequality • Graph a System of Inequalities
11.8 Linear Programming 837Set Up a Linear Programming Problem • Solve a Linear ProgrammingProblem
Chapter Review 845
Chapter Test 848
Cumulative Review 849
Chapter Projects 850
12 Sequences; Induction; the Binomial Theorem 851
12.1 Sequences 852
List the First Several Terms of a Sequence • List the Terms of a Sequence Defined by a Recursive Formula • Use Summation Notation •Find the Sum of a Sequence
12.2 Arithmetic Sequences 862
Determine Whether a Sequence Is Arithmetic • Find a Formula for an Arithmetic Sequence • Find the Sum of an Arithmetic Sequence
12.3 Geometric Sequences; Geometric Series 869
Determine Whether a Sequence Is Geometric • Find a Formula for a Geometric Sequence \bullet Find the Sum of a Geometric Sequence
- Determine Whether a Geometric Series Converges or Diverges
- Solve Annuity Problems
12.4 Mathematical Induction 881
Prove Statements Using Mathematical Induction
12.5 The Binomial Theorem 885
Evaluate $\left(\frac{n}{j}\right)$ • Use the Binomial Theorem
Chapter Review 891
Chapter Test 894
Cumulative Review 894
Chapter Projects 895
13 Counting and Probability 896
13.1 Counting 897
Find All the Subsets of a Set • Count the Number of Elements in a Set
- Solve Counting Problems Using the Multiplication Principle
13.2 Permutations and Combinations 902
Solve Counting Problems Using Permutations Involving n Distinct Objects
- Solve Counting Problems Using Combinations • Solve Counting Problems Using Permutations Involving n Nondistinct Objects
13.3 Probability 911
Construct Probability Models • Compute Probabilities of Equally Likely Outcomes • Find Probabilities of the Union of Two Events • Use the Complement Rule to Find Probabilities
Chapter Review 921
Chapter Test 923
Cumulative Review 924
Chapter Projects 924
14 A Preview of Calculus: The Limit, Derivative, and Integral of a Function 926
14.1 Investigating Limits Using Tables and Graphs 927
Investigate a Limit Using a Table • Investigate a Limit Using a Graph
14.2 Algebraic Techniques for Finding Limits 932
Find the Limit of a Sum, a Difference, and a Product • Find the Limit of a Polynomial •Find the Limit of a Power or a Root • Find the Limit of a Quotient • Find the Limit of an Average Rate of Change
14.3 One-sided Limits; Continuity 939
Find the One-sided Limits of a Function • Determine Whether a Function Is Continuous at a Number
14.4 The Tangent Problem; The Derivative 945
Find an Equation of the Tangent Line to the Graph of a Function
- Find the Derivative of a Function - Find Instantaneous Rates of Change
- Find the Instantaneous Velocity of an Object
14.5 The Area Problem; The Integral 953
Approximate the Area under the Graph of a Function • Approximate Integrals Using a Graphing Utility
Chapter Review 959
Chapter Test 962
Chapter Projects 963

A. 1 Algebra Essentials
 Work with Sets • Graph Inequalities • Find Distance on the Real Number
 Line • Evaluate Algebraic Expressions • Determine the Domain of a
 Variable • Use the Laws of Exponents • Evaluate Square Roots • Use a Calculator to Evaluate Exponents

A. 2 Geometry Essentials A14
Use the Pythagorean Theorem and Its Converse • Know Geometry Formulas

- Understand Congruent Triangles and Similar Triangles
A. 3 Polynomials A22
Recognize Monomials • Recognize Polynomials • Know Formulas for Special Products • Divide Polynomials Using Long Division • Factor Polynomials
- Complete the Square
A. 4 Synthetic Division A31
Divide Polynomials Using Synthetic Division
A. 5 Rational Expressions A35
Reduce a Rational Expression to Lowest Terms • Multiply and Divide Rational Expressions • Add and Subtract Rational Expressions • Use the Least Common Multiple Method • Simplify Complex Rational Expressions
A. 6 Solving Equations A44
Solve Equations by Factoring • Solve Equations Involving Absolute Value - Solve a Quadratic Equation by Factoring • Solve a Quadratic Equation by Completing the Square • Solve a Quadratic Equation Using the Quadratic Formula
A. 7 Complex Numbers; Quadratic Equations in the Complex Number System A54
Add, Subtract, Multiply, and Divide Complex Numbers • Solve Quadratic Equations in the Complex Number System
A. 8 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications A62
Translate Verbal Descriptions into Mathematical Expressions • Solve Interest Problems • Solve Mixture Problems • Solve Uniform Motion Problems
- Solve Constant Rate Job Problems
A. 9 Interval Notation; Solving Inequalities A72
Use Interval Notation • Use Properties of Inequalities • Solve Inequalities
- Solve Combined Inequalities • Solve Inequalities Involving Absolute Value
A. 10 nth Roots; Rational Exponents A83
Work with nth Roots • Simplify Radicals • Rationalize Denominators and Numerators • Solve Radical Equations • Simplify Expressions with Rational Exponents
Appendix B Graphing Utilities B1
B. 1 The Viewing Rectangle B1
B. 2 Using a Graphing Utility to Graph Equations B3
B. 3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry B5
B. 4 Using a Graphing Utility to Solve Equations B6
B. 5 Square Screens B8
B. 6 Using a Graphing Utility to Graph Inequalities B9
B. 7 Using a Graphing Utility to Solve Systems of Linear Equations B9
B. 8 Using a Graphing Utility to Graph a Polar Equation B11
B. 9 Using a Graphing Utility to Graph Parametric Equations B11
Answers AN1
Photo Credits C1
Subject Index I1

Three Distinct Series

Students have different goals, learning styles, and levels of preparation. Instructors have different teaching philosophies, styles, and techniques. Rather than write one series to fit all, the Sullivans have written three distinct series. All share the same goal-to develop a high level of mathematical understanding and an appreciation for the way mathematics can describe the world around us. The manner of reaching that goal, however, differs from series to series.

Flagship Series, Eleventh Edition

The Flagship Series is the most traditional in approach yet modern in its treatment of precalculus mathematics. In each text, needed review material is included, and is referenced when it is used. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra, Algebra \& Trigonometry, Trigonometry: A Unit Circle Approach, Precalculus.

Enhanced with Graphing Utilities Series, Seventh Edition

This series provides a thorough integration of graphing utilities into topics, allowing students to explore mathematical concepts and encounter ideas usually studied in later courses. Many examples show solutions using algebra side-by-side with graphing techniques. Using technology, the approach to solving certain problems differs from the Flagship Series, while the emphasis on understanding concepts and building strong skills is maintained: College Algebra, Algebra \& Trigonometry, Precalculus.

Concepts through Functions Series, Fourth Edition

This series differs from the others, utilizing a functions approach that serves as the organizing principle tying concepts together. Functions are introduced early in various formats. The approach supports the Rule of Four, which states that functions can be represented symbolically, numerically, graphically, and verbally. Each chapter introduces a new type of function and then develops all concepts pertaining to that particular function. The solutions of equations and inequalities, instead of being developed as stand-alone topics, are developed in the context of the underlying functions. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra; Precalculus, with a Unit Circle Approach to Trigonometry; Precalculus, with a Right Triangle Approach to Trigonometry.

The Flagship Series

College Algebra, Eleventh Edition

This text provides a contemporary approach to college algebra, with three chapters of review material preceding the chapters on functions. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for trigonometry, finite mathematics, and business calculus.

Algebra \& Trigonometry, Eleventh Edition

This text contains all the material in College Algebra, but also develops the trigonometric functions using a right triangle approach and shows how it relates to the unit circle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane, sequences, induction, and the binomial theorem are also presented. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Precalculus, Eleventh Edition

This text contains one review chapter before covering the traditional precalculus topics of polynomial, rational, exponential, and logarithmic functions and their graphs. The trigonometric functions are introduced using a unit circle approach and showing how it relates to the right triangle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Vectors in the plane and in space, including the dot and cross products, sequences, induction, and the binomial theorem are also presented. Graphing calculator usage is provided, but is optional. The final chapter provides an introduction to calculus, with a discussion of the limit, the derivative, and the integral of a function. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Trigonometry: a Unit Circle Approach, Eleventh Edition

This text, designed for stand-alone courses in trigonometry, develops the trigonometric functions using a unit circle approach and shows how it relates to the right triangle approach. Vectors in the plane and in space, including the dot and cross products, are presented. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Preface to the Instructor

As a professor of mathematics at an urban public university for 35 years, I understand the varied needs of precalculus students. Students range from being underprepared with little mathematical background and a fear of mathematics, to being highly prepared and motivated. For some, this is their final course in mathematics. For others, it is preparation for future mathematics courses. I have written this text with both groups in mind.

A tremendous benefit of authoring a successful series is the broad-based feedback I receive from instructors and students who have used previous editions. I am sincerely grateful for their support. Virtually every change to this edition is the result of their thoughtful comments and suggestions. I hope that I have been able to take their ideas and, building upon a successful foundation of the tenth edition, make this series an even better learning and teaching tool for students and instructors.

Features in the Eleventh Edition

A descriptive list of the many special features of Precalculus can be found in the front of this text. This list places the features in their proper context, as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review it and to discuss it with your students at the beginning of your course. My experience has been that when students use these features, they are more successful in the course.

- Updated! Retain Your Knowledge Problems These problems, which were new to the previous edition, are based on the article "To Retain New Learning, Do the Math," published in the Edurati Review. In this article, Kevin Washburn suggests that "the more students are required to recall new content or skills, the better their memory will be." The Retain Your Knowledge problems were so well received that they have been expanded in this edition. Moreover, while the focus remains to help students maintain their skills, in most sections, problems were chosen that preview skills required to succeed in subsequent sections or in calculus. These are easily identified by the calculus icon ($\$$). All answers to Retain Your Knowledge problems are given in the back of the text and all are assignable in MyLab Math.
- Guided Lecture Notes Ideal for online, emporium/ redesign courses, inverted classrooms, or traditional lecture classrooms. These lecture notes help students take thorough, organized, and understandable notes as they watch the Author in Action videos. They ask students to complete definitions, procedures, and examples based on the content of the videos and text. In addition, experience suggests that students learn by doing and understanding the why/how of the concept or property. Therefore, many
sections will have an exploration activity to motivate student learning. These explorations introduce the topic and/or connect it to either a real-world application or a previous section. For example, when the vertical-line test is discussed in Section 2.2, after the theorem statement, the notes ask the students to explain why the vertical-line test works by using the definition of a function. This challenge helps students process the information at a higher level of understanding.
- Illustrations Many of the figures have captions to help connect the illustrations to the explanations in the body of the text.
- Graphing Utility Screen Captures In several instances we have added Desmos screen captures along with the TI-84 Plus C screen captures. These updated screen captures provide alternate ways of visualizing concepts and making connections between equations, data and graphs in full color.
- Chapter Projects, which apply the concepts of each chapter to a real-world situation, have been enhanced to give students an up-to-the-minute experience. Many of these projects are new, requiring the student to research information online in order to solve problems.
- Exercise Sets The exercises in the text have been reviewed and analyzed, some have been removed, and new ones have been added. All time-sensitive problems have been updated to the most recent information available. The problem sets remain classified according to purpose.

The 'Are You Prepared?' problems have been improved to better serve their purpose as a just-in-time review of concepts that the student will need to apply in the upcoming section.

The Concepts and Vocabulary problems have been expanded to cover each objective of the section. These multiple-choice, fill-in-the-blank, and True/False exercises have been written to also serve as reading quizzes.

Skill Building problems develop the student's computational skills with a large selection of exercises that are directly related to the objectives of the section. Mixed Practice problems offer a comprehensive assessment of skills that relate to more than one objective. Often these require skills learned earlier in the course.

Applications and Extensions problems have been updated. Further, many new application-type exercises have been added, especially ones involving information and data drawn from sources the student will recognize, to improve relevance and timeliness.

At the end of Applications and Extensions, we have a collection of one or more Challenge Problems. These problems, as the title suggests, are intended to be thought-provoking, requiring some ingenuity to solve. They can be used for group work or to challenge students.

The Explaining Concepts: Discussion and Writing exercises provide opportunity for classroom discussion and group projects.

Updated! Retain Your Knowledge has been improved and expanded. The problems are based on material learned earlier in the course, especially calculus-related material. They serve to keep information that has already been learned "fresh" in the mind of the student.

NEW Need to Review? These margin notes provide a just-in-time reminder of a concept needed now, but covered in an earlier section of the book. Each note includes a reference to the chapter, section and page where the concept was originally discussed.

Content Changes to the $11^{\text {th }}$ edition

- Challenge Problems have been added in most sections at the end of the Application and Extensions exercises. Challenge Problems are intended to be thought-provoking problems that require some ingenuity to solve. They can be used to challenge students or for group work.
- Need to Review? These margin notes provide a just-in-time review for a concept needed now, but covered in an earlier section of the book. Each note is back-referenced to the chapter, section and page where the concept was originally discussed.
- Additional Retain Your Knowledge exercises, whose purpose is to keep learned material fresh in a student's mind, have been added to each section. Many of these new problems preview skills required for calculus or for concepts needed in subsequent sections.
- Desmos screen captures have been added throughout the text. This is done to recognize that graphing technology expands beyond graphing calculators.
- Examples and exercises throughout the text have been augmented to reflect a broader selection of STEM applications.
- Concepts and Vocabulary exercises have been expanded to cover each objective of a section.
- Skill building exercises have been expanded to assess a wider range of difficulty.
- Applied problems and those based on real data have been updated where appropriate.

Appendix A

- Section A. 10 Objective 3 now includes rationalizing the numerator
- NEW Example 6 Rationalizing Numerators
- Problems 69-76 provide practice.
- Section A. 10 Exercises now include more practice in simplifying radicals

Chapter 1

- NEW Section 1.2 Example 9 Testing an Equation for Symmetry
- Section 1.3 has been reorganized to treat the slope-intercept form of the equation of a line before finding an equation of a line using two points.

Chapter 2

- NEW Section 2.1 Objective 1 Describe a Relation
- NEW Section 2.2 Example 4 Expending Energy
- NEW Section 2.4 Example 4 Analyzing a Piecewise-defined Function
- NEW Example 1 Describing a Relation demonstrates using the Rule of Four to express a relation numerically, as a mapping, and graphically given a verbal description.

Chapter 3

- Section 3.3 introduces the concept of concavity for a quadratic function
- NEW Section 3.3 Example 3 Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts
- Section 3.3 Example 8 Analyzing the Motion of a Projectile (formerly in Section 3.4)
- NEW Section 3.4 Example 4 Fitting a Quadratic Function to Data

Chapter 4

- Section 4.1 has been revised and split into two sections:
- 4.1 Polynomial Functions
- 4.2 Graphing Polynomial Functions; Models
- NEW Section 4.2 Example 2 Graphing a Polynomial Function (a 4th degree polynomial function)

Chapter 5

- Section 5.2 now finds and verifies inverse functions analytically and graphically.

Chapter 6

- NEW Section 6.1 Example 6 Field Width of a Digital Lens Reflex Camera Lens
- Section 6.4 and 6.5 were reorganized for increased clarity.

Chapter 7

- Sections 7.1 and 7.2 were reorganized for increased clarity.

Chapter 9

- Section 9.3 The complex plane; DeMoivre's Theorem, was rewritten to support the exponential form of a complex number.
- Euler's Formula is introduced to express a complex number in exponential form.
- The exponential form of a complex number is used to compute products and quotients.
- DeMoivre's Theorem is expressed using the exponential form of a complex number.
- The exponential form is used to find complex roots.

Chapter 11

- NEW Section 11.5 Example 1 Identifying Proper and Improper Rational Expressions

Using the Eleventh Edition Effectively with Your Syllabus

To meet the varied needs of diverse syllabi, this text contains more content than is likely to be covered in a Precalculus course. As the chart illustrates, this text has been organized with flexibility of use in mind. Within a given chapter, certain sections are optional (see the details that follow the figure below) and can be omitted without loss of continuity.

Appendix A Review

This chapter consists of review material. It may be used as the first part of the course or later as a just-in-time review when the content is required. Specific references to this chapter occur throughout the text to assist in the review process.

Chapter 1 Graphs
This chapter lays the foundation for functions.
Chapter 2 Functions and Their Graphs
Perhaps the most important chapter. Section 2.6 is optional.

Chapter 3 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 3.2 and 3.4 may be omitted without loss of continuity.

Acknowledgments

Textbooks are written by authors, but evolve from an idea to final form through the efforts of many people. It was Don Dellen who first suggested this text and series to me. Don is remembered for his extensive contributions to publishing and mathematics.

Thanks are due to the following people for their assistance and encouragement to the preparation of this edition:

- From Pearson Education: Anne Kelly for her substantial contributions, ideas, and enthusiasm; Dawn Murrin, for her unmatched talent at getting the details right; Joseph Colella for always getting the reviews and pages to me on time; Peggy McMahon for directing the always difficult production process; Rose Kernan for handling

Chapter 4 Polynomial and Rational Functions
Topic selection depends on your syllabus.

Chapter 5 Exponential and Logarithmic Functions

Sections 5.1-5.6 follow in sequence. Sections 5.7, 5.8, and 5.9 are optional.

Chapter 6 Trigonometric Functions

Section 6.6 may be omitted in a brief course.

Chapter 7 Analytic Trigonometry

Section 7.7 may be omitted in a brief course.
Chapter 8 Applications of Trigonometric Functions Sections 8.4 and 8.5 may be omitted in a brief course.

Chapter 9 Polar Coordinates; Vectors
Sections 9.1-9.3 and Sections 9.4-9.7 are independent and may be covered separately.

Chapter 10 Analytic Geometry

Sections 10.1-10.4 follow in sequence. Sections 10.5, 10.6, and 10.7 are independent of each other, but each requires Sections 10.1-10.4.

Chapter 11 Systems of Equations and Inequalities

Sections 11.2-11.7 may be covered in any order, but each requires Section 11.1. Section 11.8 requires Section 11.7.

Chapter 12 Sequences; Induction; The Binomial Theorem

There are three independent parts: Sections 12.1-12.3; Section 12.4; and Section 12.5.

Chapter 13 Counting and Probability The sections follow in sequence.

Chapter 14 A Preview of Calculus: The Limit, Derivative, and Integral of a Function
If time permits, coverage of this chapter will give your students a beneficial head start in calculus.
liaison between the compositor and author; Peggy Lucas and Stacey Sveum for their genuine interest in marketing this text. Marcia Horton for her continued support and genuine interest; Paul Corey for his leadership and commitment to excellence; and the Pearson Sales team, for their continued confidence and personal support of Sullivan texts.

- Accuracy checkers: C. Brad Davis who read the entire manuscript and accuracy checked answers. His attention to detail is amazing; Timothy Britt, for creating the Solutions Manuals; and Kathleen Miranda and Pamela Trim for accuracy checking answers.
Finally, I offer my grateful thanks to the dedicated users and reviewers of my texts, whose collective insights form the backbone of each textbook revision.

James Africh, College of DuPage
Steve Agronsky, Cal Poly State University
Gererdo Aladro, Florida International University
Grant Alexander, Joliet Junior College
Dave Anderson, South Suburban College
Wes Anderson, Northwest Vista College
Richard Andrews, Florida A\&M University
Joby Milo Anthony, University of Central Florida
James E. Arnold, University of Wisconsin-Milwaukee
Adel Arshaghi, Center for Educational Merit
Carolyn Autray, University of West Georgia
Agnes Azzolino, Middlesex County College
Wilson P. Banks, Illinois State University
Sudeshna Basu, Howard University
Timothy Bayer, Virginia Western CC
Dale R. Bedgood, East Texas State University
Beth Beno, South Suburban College
Carolyn Bernath, Tallahassee Community College
Rebecca Berthiaume, Edison State College
William H. Beyer, University of Akron
Annette Blackwelder, Florida State University
Richelle Blair, Lakeland Community College
Kevin Bodden, Lewis and Clark College
Jeffrey Boerner, University of Wisconsin-Stout
Connie Booker, Owensboro Community and Technical College
Barry Booten, Florida Atlantic University
Laurie Boudreaux, Nicholls State University
Larry Bouldin, Roane State Community College
Bob Bradshaw, Ohlone College
Trudy Bratten, Grossmont College
Tim Bremer, Broome Community College
Tim Britt, Jackson State Community College
Holly Broesamle, Oakland CC-Auburn Hills
Michael Brook, University of Delaware
Timothy Brown, Central Washington University
Joanne Brunner, Joliet Junior College
Warren Burch, Brevard Community College
Mary Butler, Lincoln Public Schools
Melanie Butler, West Virginia University
Jim Butterbach, Joliet Junior College
Roberto Cabezas, Miami Dade College
William J. Cable, University of Wisconsin-Stevens Point
Lois Calamia, Brookdale Community College
Jim Campbell, Lincoln Public Schools
Roger Carlsen, Moraine Valley Community College
Elena Catoiu, Joliet Junior College
Mathews Chakkanakuzhi, Palomar College
Tim Chappell, Penn Valley Community College
John Collado, South Suburban College
Amy Collins, Northwest Vista College
Alicia Collins, Mesa Community College
Nelson Collins, Joliet Junior College
Rebecca Connell, Troy University
Jim Cooper, Joliet Junior College
Denise Corbett, East Carolina University
Carlos C. Corona, San Antonio College
Theodore C. Coskey, South Seattle Community College
Rebecca Connell, Troy University
Donna Costello, Plano Senior High School
Rebecca Courter, Pasadena City College
Garrett Cox, The University of Texas at San Antonio
Paul Crittenden, University of Nebraska at Lincoln
John Davenport, East Texas State University Faye Dang, Joliet Junior College
Antonio David, Del Mar College

Stephanie Deacon, Liberty University
Duane E. Deal, Ball State University
Jerry DeGroot, Purdue North Central
Timothy Deis, University of WisconsinPlatteville
Joanna DelMonaco, Middlesex Community College
Vivian Dennis, Eastfield College
Deborah Dillon, R. L. Turner High School
Guesna Dohrman, Tallahassee Community College
Cheryl Doolittle, Iowa State University
Karen R. Dougan, University of Florida
Jerrett Dumouchel, Florida Community College at Jacksonville
Louise Dyson, Clark College
Paul D. East, Lexington Community College
Don Edmondson, University of Texas-Austin
Erica Egizio, Joliet Junior College
Jason Eltrevoog, Joliet Junior College
Christopher Ennis, University of Minnesota
Kathy Eppler, Salt Lake Community College
Ralph Esparza, Jr., Richland College
Garret J. Etgen, University of Houston
Scott Fallstrom, Shoreline Community College
Pete Falzone, Pensacola Junior College
Arash Farahmand, Skyline College
Said Fariabli, San Antonio College
W.A. Ferguson, University of Illinois-Urbana/ Champaign
Iris B. Fetta, Clemson University
Mason Flake, student at Edison Community College
Timothy W. Flood, Pittsburg State University
Robert Frank, Westmoreland County
Community College
Merle Friel, Humboldt State University
Richard A. Fritz, Moraine Valley
Community College
Dewey Furness, Ricks College
Mary Jule Gabiou, North Idaho College
Randy Gallaher, Lewis and Clark College
Tina Garn, University of Arizona
Dawit Getachew, Chicago State University
Wayne Gibson, Rancho Santiago College
Loran W. Gierhart, University of Texas at San Antonio and Palo Alto College
Robert Gill, University of Minnesota Duluth
Nina Girard, University of Pittsburgh at Johnstown
Sudhir Kumar Goel, Valdosta State University
Adrienne Goldstein, Miami Dade College, Kendall Campus
Joan Goliday, Sante Fe Community College
Lourdes Gonzalez, Miami Dade College, Kendall Campus
Frederic Gooding, Goucher College
Donald Goral, Northern Virginia Community College
Sue Graupner, Lincoln Public Schools
Mary Beth Grayson, Liberty University
Jennifer L. Grimsley, University of Charleston
Ken Gurganus, University of North Carolina
Igor Halfin, University of Texas-San Antonio
James E. Hall, University of WisconsinMadison
Judy Hall, West Virginia University
Edward R. Hancock, DeVry Institute of Technology
Julia Hassett, DeVry Institute, Dupage
Christopher Hay-Jahans, University of South Dakota
Michah Heibel, Lincoln Public Schools
LaRae Helliwell, San Jose City College
Celeste Hernandez, Richland College
Gloria P. Hernandez, Louisiana State University at Eunice
Brother Herron, Brother Rice High School

Robert Hoburg, Western Connecticut State University
Lynda Hollingsworth, Northwest Missouri State University
Deltrye Holt, Augusta State University
Charla Holzbog, Denison High School
Lee Hruby, Naperville North High School
Miles Hubbard, St. Cloud State University
Kim Hughes, California State College-San Bernardino
Stanislav, Jabuka, University of Nevada, Reno
Ron Jamison, Brigham Young University
Richard A. Jensen, Manatee Community College
Glenn Johnson, Middlesex Community College
Sandra G. Johnson, St. Cloud State University
Tuesday Johnson, New Mexico State University
Susitha Karunaratne, Purdue University North Central
Moana H. Karsteter, Tallahassee Community College
Donna Katula, Joliet Junior College
Arthur Kaufman, College of Staten Island
Thomas Kearns, North Kentucky University
Jack Keating, Massasoit Community College
Shelia Kellenbarger, Lincoln Public Schools
Rachael Kenney, North Carolina State University
Penelope Kirby, Florida State University
John B. Klassen, North Idaho College
Debra Kopcso, Louisiana State University
Lynne Kowski, Raritan Valley Community College
Yelena Kravchuk, University of Alabama at Birmingham
Ray S. Kuan, Skyline College
Keith Kuchar, Manatee Community College
Tor Kwembe, Chicago State University
Linda J. Kyle, Tarrant Country Jr. College
H.E. Lacey, Texas A \& M University

Darren Lacoste, Valencia College-West Campus
Harriet Lamm, Coastal Bend College
James Lapp, Fort Lewis College
Matt Larson, Lincoln Public Schools
Christopher Lattin, Oakton Community College
Julia Ledet, Lousiana State University
Wayne Lee, St. Phillips CC
Adele LeGere, Oakton Community College
Kevin Leith, University of Houston
JoAnn Lewin, Edison College
Jeff Lewis, Johnson County Community College
Janice C. Lyon, Tallahassee Community College
Jean McArthur, Joliet Junior College
Virginia McCarthy, Iowa State University
Karla McCavit, Albion College
Michael McClendon, University of Central Oklahoma
Tom McCollow, DeVry Institute of Technology
Marilyn McCollum, North Carolina State University
Jill McGowan, Howard University
Will McGowant, Howard University
Angela McNulty, Joliet Junior College
Lisa Meads, College of the Albemarle
Laurence Maher, North Texas State University
Jay A. Malmstrom, Oklahoma City Community College
Rebecca Mann, Apollo High School
Lynn Marecek, Santa Ana College
Sherry Martina, Naperville North High School
Ruby Martinez, San Antonio College
Alec Matheson, Lamar University
Nancy Matthews, University of Oklahoma

James Maxwell, Oklahoma State University-Stillwater
Marsha May, Midwestern State University James McLaughlin, West Chester University
Judy Meckley, Joliet Junior College
David Meel, Bowling Green State University
Carolyn Meitler, Concordia University
Samia Metwali, Erie Community College
Rich Meyers, Joliet Junior College
Eldon Miller, University of Mississippi
James Miller, West Virginia University
Michael Miller, Iowa State University
Kathleen Miranda, SUNY at Old Westbury
Chris Mirbaha, The Community College of Baltimore County
Val Mohanakumar, Hillsborough Community College
Thomas Monaghan, Naperville North High School
Miguel Montanez, Miami Dade College, Wolfson Campus
Maria Montoya, Our Lady of the Lake University
Susan Moosai, Florida Atlantic University
Craig Morse, Naperville North High School
Samad Mortabit, Metropolitan State University
Pat Mower, Washburn University
Tammy Muhs, University of Central Florida
A. Muhundan, Manatee Community College

Jane Murphy, Middlesex Community College
Richard Nadel, Florida International University
Gabriel Nagy, Kansas State University
Bill Naegele, South Suburban College
Karla Neal, Lousiana State University
Lawrence E. Newman, Holyoke Community College
Dwight Newsome, Pasco-Hernando Community College
Denise Nunley, Maricopa Community Colleges
James Nymann, University of Texas-El Paso
Mark Omodt, Anoka-Ramsey Community College
Seth F. Oppenheimer, Mississippi State University
Leticia Oropesa, University of Miami
Linda Padilla, Joliet Junior College
Sanja Pantic, University of Illinois at Chicago
E. James Peake, Iowa State University

Kelly Pearson, Murray State University
Dashamir Petrela, Florida Atlantic University
Philip Pina, Florida Atlantic University
Charlotte Pisors, Baylor University
Michael Prophet, University of Northern Iowa
Laura Pyzdrowski, West Virginia University
Carrie Quesnell, Weber State University
Neal C. Raber, University of Akron
Thomas Radin, San Joaquin Delta College

Aibeng Serene Radulovic, Florida Atlantic University
Ken A. Rager, Metropolitan State College Traci Reed, St. Johns River State College
Kenneth D. Reeves, San Antonio College
Elsi Reinhardt, Truckee Meadows Community College
Jose Remesar, Miami Dade College, Wolfson Campus
Jane Ringwald, Iowa State University
Douglas F. Robertson, University of Minnesota, MPLS
Stephen Rodi, Austin Community College
William Rogge, Lincoln Northeast High School
Howard L. Rolf, Baylor University
Mike Rosenthal, Florida International University
Phoebe Rouse, Lousiana State University
Edward Rozema, University of Tennessee at Chattanooga
Dennis C. Runde, Manatee Community College
Paul Runnion, Missouri University of Science and Technology
Amit Saini, University of Nevada-Reno
Laura Salazar, Northwest Vista College
Alan Saleski, Loyola University of Chicago
Susan Sandmeyer, Jamestown Community College
Brenda Santistevan, Salt Lake Community College
Linda Schmidt, Greenville Technical College
Ingrid Scott, Montgomery College
A.K. Shamma, University of West Florida

Zachery Sharon, University of Texas at San Antonio
Joshua Shelor, Virginia Western CC
Martin Sherry, Lower Columbia College
Carmen Shershin, Florida International University
Tatrana Shubin, San Jose State University
Anita Sikes, Delgado Community College
Timothy Sipka, Alma College
Charlotte Smedberg, University of Tampa
Lori Smellegar, Manatee Community College
Gayle Smith, Loyola Blakefield
Cindy Soderstrom, Salt Lake Community College
Leslie Soltis, Mercyhurst College
John Spellman, Southwest Texas State University
Karen Spike, University of North Carolina
Rajalakshmi Sriram, Okaloosa-Walton Community College
Katrina Staley, North Carolina Agricultural and Technical State University
Becky Stamper, Western Kentucky University
Judy Staver, Florida Community College-South

Robin Steinberg, Pima Community College
Neil Stephens, Hinsdale South High School
Sonya Stephens, Florida A\&M Univeristy
Patrick Stevens, Joliet Junior College
John Sumner, University of Tampa
Matthew TenHuisen, University of North Carolina, Wilmington
Christopher Terry, Augusta State University
Diane Tesar, South Suburban College
Tommy Thompson, Brookhaven College
Martha K. Tietze, Shawnee Mission Northwest High School
Richard J. Tondra, Iowa State University
Florentina Tone, University of West Florida
Suzanne Topp, Salt Lake Community College
Marilyn Toscano, University of Wisconsin, Superior
Marvel Townsend, University of Florida
Jim Trudnowski, Carroll College
David Tseng, Miami Dade College, Kendall Campus
Robert Tuskey, Joliet Junior College
Mihaela Vajiac, Chapman University-Orange
Julia Varbalow, Thomas Nelson Community College-Leesville
Richard G. Vinson, University of South Alabama
Jorge Viola-Prioli, Florida Atlantic University
Mary Voxman, University of Idaho
Jennifer Walsh, Daytona Beach Community College
Donna Wandke, Naperville North High School
Timothy L. Warkentin, Cloud County Community College
Melissa J. Watts, Virginia State University
Hayat Weiss, Middlesex Community College
Kathryn Wetzel, Amarillo College
Darlene Whitkenack, Northern Illinois University
Suzanne Williams, Central Piedmont Community College
Larissa Williamson, University of Florida
Christine Wilson, West Virginia University
Brad Wind, Florida International University
Anna Wiodarczyk, Florida International University
Mary Wolyniak, Broome Community College
Canton Woods, Auburn University
Tamara S. Worner, Wayne State College
Terri Wright, New Hampshire Community Technical College, Manchester
Rob Wylie, Carl Albert State College
Aletheia Zambesi, University of West Florida
George Zazi, Chicago State University
Loris Zucca, Lone Star College-Kingwood
Steve Zuro, Joliet Junior College

Wichnel Sullivan

Pearson would like to thank the following for their contribution to the Global Edition:

Contributors

Anuj Chatterje
Monica Sethi
Sunila Sharma, Miranda House

Reviewers

Kwa Kiam Heong, Universiti Malaya
Jairusha Jackson
Emrah Kiliç, TOBB University of Economics and Technology
Ersin Özuğurlu, Istanbul Technical University
Mani Sankar, East Point College of Engineering and Technology

Get the Most Out of MyLab Math π Int|

Math courses are continuously evolving to help today's students succeed. It's more challenging than ever to support students with a wide range of backgrounds, learner styles, and math anxieties. The flexibility to build a course that fits instructors' individual course formats-with a variety of content options and multimedia resources all in one place-has made MyLab Math the market-leading solution for teaching and learning mathematics since its inception.

Preparedness

One of the biggest challenges in College Algebra, Trigonometry, and Precalculus is making sure students are adequately prepared with prerequisite knowledge. For a student, having the essential algebra skills upfront in this course can dramatically increase success.

- MyLab Math with Integrated Review can be used in corequisite courses, or simply to help students who enter without a full understanding of prerequisite skills and concepts. Integrated Review provides videos on review topics with a corresponding worksheet, along with premade, assignable skills-check quizzes and personalized review homework assignments. Integrated Review is now available within all Sullivan 11th Edition MyLab Math courses.

Resources for Success

MyLab Math Online Course for Precalculus, 11th Edition by Michael Sullivan (access code required)
MyLab ${ }^{\text {TM }}$ Math is tightly integrated with each author's style, offering a range of author-created multimedia resources, so your students have a consistent experience.

Video Program and Resources

Author in Action Videos are actual classroom lectures by Michael Sullivan III with fully worked-out examples.

- Video assessment questions are available to assign in MyLab Math for key videos.
- Updated! The corresponding Guided Lecture Notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos.

EXAMPLE

Finding the Exact Value of a Logarithmic Expression

Guided Visualizations

New! Guided Visualizations, created in GeoGebra by Michael Sullivan III, bring mathematical concepts to life, helping students visualize the concept through directed exploration and purposeful manipulation. Assignable in MyLab Math with assessment questions to check students' conceptual understanding.

Retain Your Knowledge Exercises

 Updated! Retain Your KnowledgeExercises, assignable in MyLab Math, improve students' recall of concepts learned earlier in the course. New for the 11th Edition, additional exercises will be included that will have an emphasis on content that students will build upon in the immediate upcoming section.

Resources for Success

Instructor Resources

Online resources can be downloaded from the Instructor Resource Center.

Instructor's Solutions Manual

Includes fully worked solutions to all exercises in the text.

Learning Catalytics Question Library

 Questions written by Michael Sullivan III are available within MyLab Math to deliver through Learning Catalytics to engage students in your course.
Powerpoint ${ }^{\circledR}$ Lecture Slides

Fully editable slides correlate to the textbook.

Mini Lecture Notes

Includes additional examples and helpful teaching tips, by section.

Testgen ${ }^{\circledR}$

TestGen (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text.

Online Chapter Projects

Additional projects that give students an opportunity to apply what they learned in the chapter.

Student Resources

Additional resources to enhance student success.

Lecture Video

Author in Action videos are actual classroom lectures with fully worked out examples presented by Michael Sullivan, III. All video is assignable within MyLab Math.

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all chapter test exercises from the text. These are available in MyLab Math and on YouTube.

Guided Lecture Notes

These lecture notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos. Students actively participate in learning the how/why of important concepts through explorations and activities. The Guided Lecture Notes are available as PDF's and customizable Word files in MyLab Math. They can also be packaged with the text and the MyLab Math access code.

Applications Index

absolute maximum/minimum in, 113 area under a curve, $147,498,722,736,812$ average rate of change in, $116,233,353$, $464,499,504,515,523,581,667,699$, 749, 770, 862
carrying a ladder around a corner, 464, 513
composite functions in, 299
concavity test, 191, 844
critical numbers, 862
difference quotient in, $90,97,147,204,226$, $331,353,370,411,442,534,709,749$, 829
discontinuous functions, 259
e^{x} in, 323, 861
factoring in, 345, 498, 770, 844
functions approximated by polynomial functions in, 233
increasing/decreasing functions in, 111, 191, 226, 736, 837
Intermediate Value Theorem, 276, 837
maxima/minima in, 113, 171, 381, 442
maximizing projectile range, 540,545
maximizing rain gutter construction, 545
partial fraction decomposition, 868, 885, 902, 911
perpendicular lines, 795, 820
radians in, 400
rationalizing numerators, 795
secant line in, 116, 171, 370, 515
second derivative, 902
simplifying in, 571
Simpson's rule, 200
Snell's Law of Refraction, 514
tangent line, 594, 595, 604, 636
trigonometric expressions and functions, $502,512,522,536,538-539,543,546$, 549, 551, 699, 722, 885

Acoustics

amplifying sound, 392
loudness of sound, 343,394
loudspeaker, 603
sonic boom, 721
tuning fork, 603, 604
whispering galleries, 705-706

Aerodynamics

modeling aircraft motion, 687

Aeronautics

fighter jet design, 593

Agriculture

farm management, 843
farm workers in U.S., 380
field enclosure, 828
grazing area for cow, 594
milk production, 387
minimizing cost, 843
removing stump, 658-659

Air travel

bearing of aircraft, 568
distance between two planes, 149
frequent flyer miles, 579
holding pattern, 456, 513
parking at O'Hare International Airport, 131
revising a flight plan, 586
sonic boom, 721
speed and direction of aircraft, 653,657

Archaeology

age of ancient tools, 373-374
age of fossil, 379
age of tree, 379
date of prehistoric man's death, 393

Architecture

brick staircase, 868, 893
Burj Khalifa building, A15
Flatiron Building, 593
floor design, 866, 893
football stadium seating, 867
mosaic design, 868, 893
Norman window, 198, A20
parabolic arch, 198
racetrack design, 708
special window, 198, 206
stadium construction, 868
vertically circular building, 77
window design, 198

Area. See also Geometry

of Bermuda Triangle, 593
under a curve, 498
of isosceles triangle, 545
of portion of rectangle outside of circle, 410
of sector of circle, 405, 408
of segment of circle, 606
for tethered dog to roam, 410
of windshield wiper sweep, 408

Art

fine decorative pieces, 426

Astronomy

angle of elevation of Sun, 567
distances in, 568, 861
Halley's comet, 736
International Space Station (ISS), 749 parallax, 568
planetary orbits
Earth, 708
elliptical, 708
Jupiter, 708
Mars, 708
Mercury, 736
Pluto, 708
radius of Moon, 427

Aviation

modeling aircraft motion, 687
orbital launches, 767
speed of plane, A72

Biology

alcohol and driving, 339, 344
bacterial growth, 372-373, 386
E-coli, 120, 162
blood types, 901
bone length, 206-207
cricket chirp rate and temperature, 199
healing of wounds, 329,343
lung volume, 442
maternal age versus Down syndrome, 177
muscle force, 658
yeast biomass as function of time, 385

Business

advertising, 106, 178, 207
automobile production, 301, 783
blending coffee, A70
checkout lines, 920
clothing store, 923
commissions, 206
cookie orders, 848
cost
of can, 255, 258
of commodity, 301
of manufacturing, 266, 836, A13, A69
marginal, 191, 206
minimizing, 206, 843, 848
of printing, 230-231
of production, $120,301,810,848$
of transporting goods, 132
cost equation, 105
cost function, 170
customer wait times, 257
demand equation, 206, 292
depreciation, 294, 344
discount pricing, 302
drive-thru rate
at Burger King, 325
at Citibank, 329, 343
at McDonald's, 329-330
equipment depreciation, 878
expense computation, A71
farm workers in U.S., 380
inventory management, 152

