
Untitled-1 1 07/08/2018 21:31

DIGITAL DESIGN
Principles and Practices

DDPP5.book Page i Tuesday, March 28, 2017 5:46 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

DIGITAL DESIGN
Principles and Practices

Fifth Edition with Verilog

John F. Wakerly

330 Hudson Street, NY NY 10013

DDPP5.book Page iii Tuesday, March 28, 2017 5:46 PM

Senior Vice President Courseware Portfolio Management: Marcia J. Horton
Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge
Portfolio Manager Assistant: Michelle Bayman
Field Marketing Manager: Demetrius Hall
Product Marketing Manager: Yvonne Vannatta
Marketing Assistant: Jon Bryant
Content Managing Producer, ECS and Math: Scott Disanno
Operations Specialist: Maura Zaldivar-Garcia
Manager, Rights and Permissions: Ben Ferrini
Cover Designer: Black Horse Designs
Cover Art: “Tuesday Matinee,” by Peter Alan Crowell

Copyright © 2018, 2006, 2000 by Pearson Education, Inc. Hoboken, NJ 07030. All rights reserved. Manufactured in the
United States of America. This publication is protected by copyright and permissions should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms
and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit
www.pearsoned.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps. The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of theories and programs to determine their effectiveness.

The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not be liable in any event for incidental or
consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Pearson Education Ltd., London
Pearson Education Singapore, Pte. Ltd
Pearson Education Canada, Inc.
Pearson Education Japan
Pearson Education Australia PTY, Ltd
Pearson Education North Asia, Ltd., Hong Kong
Pearson Education de Mexico, S.A. de C.V.
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Hoboken

Library of Congress Cataloging-in-Publication Data on File

ISBN-10: 013446009X
1 16 ISBN-13: 9780134460093

 www.pearsonhighered.com

DDPP5.book Page iv Tuesday, March 28, 2017 5:46 PM

For Ralph and Carm, again

DDPP5.book Page v Tuesday, March 28, 2017 5:46 PM

DDPP5.book Page ii Tuesday, March 28, 2017 5:46 PM

This page intentionally left blank

vii

CONTENTS

Preface xv

1 INTRODUCTION 1
1.1 About Digital Design 1
1.2 Analog versus Digital 3
1.3 Analog Signals 7
1.4 Digital Logic Signals 7
1.5 Logic Circuits and Gates 9
1.6 Software Aspects of Digital Design 13
1.7 Integrated Circuits 16
1.8 Logic Families and CMOS 19
1.9 CMOS Logic Circuits 20
1.10 Programmable Devices 25
1.11 Application-Specific ICs 27
1.12 Printed-Circuit Boards 28
1.13 Digital-Design Levels 29
1.14 The Name of the Game 33
1.15 Going Forward 34
Drill Problems 34

2 NUMBER SYSTEMS AND CODES 35
2.1 Positional Number Systems 36
2.2 Binary, Octal, and Hexadecimal Numbers 37
2.3 Binary-Decimal Conversions 39
2.4 Addition and Subtraction of Binary Numbers 42
2.5 Representation of Negative Numbers 44

2.5.1 Signed-Magnitude Representation 2.5.2 Complement Number Systems
2.5.3 Two’s-Complement Representation
2.5.4 Ones’-Complement Representation 2.5.5 Excess Representations

2.6 Two’s-Complement Addition and Subtraction 48
2.6.1 Addition Rules 2.6.2 A Graphical View 2.6.3 Overflow
2.6.4 Subtraction Rules 2.6.5 Two’s-Complement and Unsigned Binary Numbers

DDPP5.book Page vii Tuesday, March 28, 2017 5:46 PM

viii Contents

2.7 Ones’-Complement Addition and Subtraction 52
2.8 Binary Multiplication 54
2.9 Binary Division 56
2.10 Binary Codes for Decimal Numbers 57
2.11 Gray Code 60
2.12 Character Codes 62
2.13 Codes for Actions, Conditions, and States 64
2.14 n-Cubes and Distance 66
2.15 Codes for Detecting and Correcting Errors 67

2.15.1 Error-Detecting Codes
2.15.2 Error-Correcting and Multiple-Error-Detecting Codes
2.15.3 Hamming Codes 2.15.4 CRC Codes
2.15.5 Two-Dimensional Codes 2.15.6 Checksum Codes
2.15.7 m-out-of-n Codes

2.16 Codes for Transmitting and Storing Serial Data 78
2.16.1 Parallel and Serial Data 2.16.2 Serial Line Codes

References 82
Drill Problems 83
Exercises 85

3 SWITCHING ALGEBRA AND COMBINATIONAL LOGIC 89
3.1 Switching Algebra 91

3.1.1 Axioms 3.1.2 Single-Variable Theorems
3.1.3 Two- and Three-Variable Theorems 3.1.4 n-Variable Theorems
3.1.5 Duality 3.1.6 Standard Representations of Logic Functions

3.2 Combinational-Circuit Analysis 104
3.3 Combinational-Circuit Synthesis 110

3.3.1 Circuit Descriptions and Designs 3.3.2 Circuit Manipulations
3.3.3 Combinational-Circuit Minimization 3.3.4 Karnaugh Maps

3.4 Timing Hazards 122
3.4.1 Static Hazards 3.4.2 Finding Static Hazards Using Maps
3.4.3 Dynamic Hazards 3.4.4 Designing Hazard-Free Circuits

References 126
Drill Problems 128
Exercises 129

4 DIGITAL DESIGN PRACTICES 133
4.1 Documentation Standards 133

4.1.1 Block Diagrams 4.1.2 Gate Symbols
4.1.3 Signal Names and Active Levels 4.1.4 Active Levels for Pins
4.1.5 Constant Logic Signals 4.1.6 Bubble-to-Bubble Logic Design
4.1.7 Signal Naming in HDL Models 4.1.8 Drawing Layout
4.1.9 Buses 4.1.10 Additional Schematic Information

4.2 Circuit Timing 154
4.2.1 Timing Diagrams 4.2.2 Propagation Delay
4.2.3 Timing Specifications 4.2.4 Sample Timing Specifications
4.2.5 Timing Analysis Tools

DDPP5.book Page viii Tuesday, March 28, 2017 5:46 PM

Contents ix

4.3 HDL-Based Digital Design 165
4.3.1 HDL History 4.3.2 Why HDLs?
4.3.3 EDA Tool Suites for HDLs 4.3.4 HDL-Based Design Flow

References 172
Drill Problems 174
Exercises 176

5 VERILOG HARDWARE DESCRIPTION LANGUAGE 177
5.1 Verilog Models and Modules 179
5.2 Logic System, Nets, Variables, and Constants 184
5.3 Vectors and Operators 189
5.4 Arrays 193
5.5 Logical Operators and Expressions 194
5.6 Compiler Directives 197
5.7 Structural Models 198
5.8 Dataflow Models 203
5.9 Behavioral Models (Procedural Code) 205

5.9.1 Always Statements and Blocks 5.9.2 Procedural Statements
5.9.3 Inferred Latches 5.9.4 Assignment Statements
5.9.5 begin-end Blocks 5.9.6 if and if-else Statements
5.9.7 case Statements 5.9.8 Looping Statements

5.10 Functions and Tasks 220
5.11 The Time Dimension 224
5.12 Simulation 225
5.13 Test Benches 226
5.14 Verilog Features for Sequential Logic Design 232
5.15 Synthesis 232
References 233
Drill Problems 234
Exercises 235

6 BASIC COMBINATIONAL LOGIC ELEMENTS 237
6.1 Read-Only Memories (ROMs) 240

6.1.1 ROMs and Truth Tables
6.1.2 Using ROMs for Arbitrary Combinational Logic Functions
6.1.3 FPGA Lookup Tables (LUTs)

6.2 Combinational PLDs 246
6.2.1 Programmable Logic Arrays
6.2.2 Programmable Array Logic Devices

6.3 Decoding and Selecting 250
6.3.1 A More Mathy Decoder Definition 6.3.2 Binary Decoders
6.3.3 Larger Decoders 6.3.4 Decoders in Verilog
6.3.5 Custom Decoders 6.3.6 Seven-Segment Decoders
6.3.7 Binary Encoders

6.4 Multiplexing 281
6.4.1 Gate-Level Multiplexer Circuits 6.4.2 Expanding Multiplexers
6.4.3 Multiplexers, Demultiplexers, and Buses
6.4.4 Multiplexers in Verilog

DDPP5.book Page ix Tuesday, March 28, 2017 5:46 PM

x Contents

References 294
Drill Problems 295
Exercises 296

7 MORE COMBINATIONAL BUILDING BLOCKS 301
7.1 Three-State Devices 302

7.1.1 Three-State Buffers 7.1.2 Standard MSI Three-State Buffers
7.1.3 Three-State Outputs in Verilog 7.1.4 Three-State Outputs in FPGAs

7.2 Priority Encoding 312
7.2.1 Cascading Priority Encoders 7.2.2 Priority Encoders in Verilog

7.3 Exclusive-OR Gates and Parity Functions 320
7.3.1 Exclusive-OR and Exclusive-NOR Gates
7.3.2 Parity Circuits 7.3.3 Parity-Checking Applications
7.3.4 Exclusive-OR Gates and Parity Circuits in Verilog

7.4 Comparing 331
7.4.1 Comparator Structure 7.4.2 Iterative Circuits
7.4.3 An Iterative Comparator Circuit 7.4.4 Magnitude Comparators
7.4.5 Comparators in HDLs 7.4.6 Comparators in Verilog
7.4.7 Comparator Test Benches
7.4.8 Comparing Comparator Performance

7.5 A Random-Logic Example in Verilog 356
Drill Problems 363
Exercises 364

8 COMBINATIONAL ARITHMETIC ELEMENTS 371
8.1 Adding and Subtracting 372

8.1.1 Half Adders and Full Adders 8.1.2 Ripple Adders
8.1.3 Subtractors 8.1.4 Carry-Lookahead Adders
8.1.5 Group Ripple Adders 8.1.6 Group-Carry Lookahead
8.1.7 MSI Arithmetic and Logic Units 8.1.8 Adders in Verilog
8.1.9 Parallel-Prefix Adders 8.1.10 FPGA CARRY4 Element

8.2 Shifting and Rotating 403
8.2.1 Barrel Shifters 8.2.2 Barrel Shifters in Verilog

8.3 Multiplying 416
8.3.1 Combinational Multiplier Structures 8.3.2 Multiplication in Verilog

8.4 Dividing 426
8.4.1 Basic Unsigned Binary Division Algorithm
8.4.2 Division in Verilog

References 433
Drill Problems 433
Exercises 434

9 STATE MACHINES 439
9.1 State-Machine Basics 440
9.2 State-Machine Structure and Analysis 443

9.2.1 State-Machine Structure 9.2.2 Output Logic
9.2.3 State-Machine Timing
9.2.4 Analysis of State Machines with D Flip-Flops

DDPP5.book Page x Tuesday, March 28, 2017 5:46 PM

Contents xi

9.3 State-Machine Design with State Tables 455
9.3.1 State-Table Design Example 9.3.2 State Minimization
9.3.3 State Assignment 9.3.4 Synthesis Using D Flip-Flops
9.3.5 Beyond State Tables

9.4 State-Machine Design with State Diagrams 472
9.4.1 T-Bird Tail Lights Example

9.5 State-Machine Design with ASM Charts 478
9.5.1 T-Bird Tail Lights with ASM Charts

9.6 State-Machine Design with Verilog 483
References 486
Drill Problems 487
Exercises 490

10 SEQUENTIAL LOGIC ELEMENTS 495
10.1 Bistable Elements 496

10.1.1 Digital Analysis 10.1.2 Analog Analysis
10.1.3 Metastable Behavior

10.2 Latches and Flip-Flops 499
10.2.1 S-R Latch 10.2.2 S-R Latch
10.2.3 D Latch 10.2.4 Edge-Triggered D Flip-Flop
10.2.5 Edge-Triggered D Flip-Flop with Enable 10.2.6 T Flip-Flops

10.3 Latches and Flip-Flops in Verilog 508
10.3.1 Instance Statements and Library Components
10.3.2 Behavioral Latch and Flip-Flop Models
10.3.3 More about clocking in Verilog

10.4 Multibit Registers and Latches 522
10.4.1 MSI Registers and Latches
10.4.2 Multibit Registers and Latches in Verilog

10.5 Miscellaneous Latch and Bistable Applications 525
10.5.1 Switch Debouncing 10.5.2 Bus-Holder Circuits

10.6 Sequential PLDs 528
10.7 FPGA Sequential Logic Elements 531
10.8 Feedback Sequential Circuits 534

10.8.1 Basic Analysis
10.8.2 Analyzing Circuits with Multiple Feedback Loops
10.8.3 Feedback Sequential-Circuit Design
10.8.4 Feedback Sequential Circuits in Verilog

References 544
Drill Problems 545
Exercises 547

11 COUNTERS AND SHIFT REGISTERS 553
11.1 Counters 554

11.1.1 Ripple Counters 11.1.2 Synchronous Counters
11.1.3 A Universal 4-Bit Counter Circuit
11.1.4 Decoding Binary-Counter States
11.1.5 Counters in Verilog

DDPP5.book Page xi Tuesday, March 28, 2017 5:46 PM

xii Contents

11.2 Shift Registers 566
11.2.1 Shift-Register Structure 11.2.2 Shift-Register Counters
11.2.3 Ring Counters 11.2.4 Johnson Counters
11.2.5 Linear Feedback Shift-Register Counters
11.2.6 Shift Registers in Verilog 11.2.7 Timing-Generator Examples
11.2.8 LFSR Examples

11.3 Iterative versus Sequential Circuits 593
References 596
Drill Problems 596
Exercises 599

12 STATE MACHINES IN VERILOG 605
12.1 Verilog State-Machine Coding Styles 606

12.1.1 Basic Coding Style 12.1.2 A Verilog State-Machine Example
12.1.3 Combined State Memory and Next-State Logic 12.1.4 Reset Inputs
12.1.5 Pipelined Moore Outputs in Verilog
12.1.6 Direct Verilog Coding Without a State Table
12.1.7 State-Machine Extraction

12.2 Verilog State-Machine Test Benches 616
12.2.1 State-Machine Test-Bench Construction Methods
12.2.2 Example Test Benches
12.2.3 Instrumenting Next-State Logic for Testing
12.2.4 In Summary

12.3 Ones Counter 626
12.4 Combination Lock 628
12.5 T-Bird Tail Lights 632
12.6 Reinventing Traffic-Light Controllers 637
12.7 The Guessing Game 642
12.8 “Don’t-Care” State Encodings 646
12.9 Decomposing State Machines 648

12.9.1 The Guessing Game Again
12.10 The Trilogy Game 656
References 664
Drill Problems 664
Exercises 666

13 SEQUENTIAL-CIRCUIT DESIGN PRACTICES 673
13.1 Sequential-Circuit Documentation Practices 674

13.1.1 General Requirements 13.1.2 Logic Symbols
13.1.3 State-Machine Descriptions
13.1.4 Timing Diagrams and Specifications

13.2 Synchronous Design Methodology 681
13.2.1 Synchronous System Structure
13.2.2 A Synchronous System Design Example

13.3 Difficulties in Synchronous Design 691
13.3.1 Clock Skew 13.3.2 Gating the Clock
13.3.3 Asynchronous Inputs

DDPP5.book Page xii Tuesday, March 28, 2017 5:46 PM

Contents xiii

13.4 Synchronizer Failure and Metastability 701
13.4.1 Synchronizer Failure 13.4.2 Metastability Resolution Time
13.4.3 Reliable Synchronizer Design 13.4.4 Analysis of Metastable Timing
13.4.5 Better Synchronizers 13.4.6 Other Synchronizer Designs

13.5 Two-Clock Synchronization Example 710
References 729
Drill Problems 729
Exercises 730

14 DIGITAL CIRCUITS 733
14.1 CMOS Logic Circuits 735

14.1.1 CMOS Logic Levels 14.1.2 MOS Transistors
14.1.3 Basic CMOS Inverter Circuit
14.1.4 CMOS NAND and NOR Gates
14.1.5 Fan-In 14.1.6 Noninverting Gates
14.1.7 CMOS AND-OR-INVERT and OR-AND-INVERT Gates

14.2 Electrical Behavior of CMOS Circuits 745
14.2.1 Overview 14.2.2 Data Sheets and Specifications

14.3 CMOS Static Electrical Behavior 748
14.3.1 Logic Levels and Noise Margins
14.3.2 Circuit Behavior with Resistive Loads
14.3.3 Circuit Behavior with Nonideal Inputs 14.3.4 Fanout
14.3.5 Effects of Loading 14.3.6 Unused Inputs
14.3.7 How to Destroy a CMOS Device

14.4 CMOS Dynamic Electrical Behavior 764
14.4.1 Transition Time 14.4.2 Propagation Delay
14.4.3 Power Consumption
14.4.4 Current Spikes and Decoupling Capacitors
14.4.5 Inductive Effects
14.4.6 Simultaneous Switching and Ground Bounce

14.5 Other CMOS Input and Output Structures 778
14.5.1 Transmission Gates 14.5.2 Schmitt-Trigger Inputs
14.5.3 Three-State Outputs 14.5.4 Open-Drain Outputs
14.5.5 Driving LEDs and Relays 14.5.6 Multisource Buses
14.5.7 Wired Logic 14.5.8 Pull-Up Resistors

14.6 CMOS Logic Families 790
14.6.1 HC and HCT 14.6.2 AHC and AHCT
14.6.3 HC, HCT, AHC, and AHCT Electrical Characteristics
14.6.4 AC and ACT 14.6.5 FCT and FCT-T

14.7 Low-Voltage CMOS Logic and Interfacing 798
14.7.1 3.3-V LVTTL and LVCMOS Logic Levels 14.7.2 5-V Tolerant Inputs
14.7.3 5-V Tolerant Outputs 14.7.4 TTL/LVTTL Interfacing Summary
14.7.5 Logic Levels Less Than 3.3 V

14.8 Differential Signaling 803
References 804
Drill Problems 805
Exercises 808

DDPP5.book Page xiii Tuesday, March 28, 2017 5:46 PM

xiv Contents

15 ROMS, RAMS, AND FPGAS 813
15.1 Read-Only Memory 814

15.1.1 Internal ROM Structure 15.1.2 Two-Dimensional Decoding
15.1.3 Commercial ROM Types 15.1.4 Parallel-ROM Interfaces
15.1.5 Parallel-ROM Timing
15.1.6 Byte-Serial Interfaces for NAND Flash Memories
15.1.7 NAND Memory Timing and Access Bandwidth
15.1.8 Storage Management for NAND Memories

15.2 Read/Write Memory 833
15.3 Static RAM 834

15.3.1 Static-RAM Inputs and Outputs
15.3.2 Static-RAM Internal Structure 15.3.3 Static-RAM Timing
15.3.4 Standard Asynchronous SRAMs 15.3.5 Synchronous SRAM

15.4 Dynamic RAM 844
15.4.1 Dynamic-RAM Structure 15.4.2 SDRAM Timing
15.4.3 DDR SDRAMs

15.5 Field-Programmable Gate Arrays (FPGAs) 851
15.5.1 Xilinx 7-Series FPGA Family
15.5.2 CLBs and Other Logic Resources 15.5.3 Input/Output Block
15.5.4 Programmable Interconnect

References 863
Drill Problems 864

Index 867

DDPP5.book Page xiv Tuesday, March 28, 2017 5:46 PM

xv

PREFACE

This book is for everyone who wants to design and build real digital circuits. It
is based on the idea that, in order to do this, you have to grasp the fundamentals,
but at the same time you need to understand how things work in the real world.
Hence, the “principles and practices” theme.

The practice of digital design has undergone a major transformation during
the past 30 years, a direct result of the stunning increases in integrated-circuit
speed and density over the same time period. In the past, when digital designers
were building systems with thousands or at most tens of thousands of gates and
flip-flops, academic courses emphasized minimization and efficient use of chip
and board-level resources.

Today, a single chip can contain tens of millions of transistors and can be
programmed to create a system-on-a-chip that, using the technology of the past,
would have required hundreds of discrete chips containing millions of individual
gates and flip-flops. Successful product development nowadays is limited more
by the design team’s ability to correctly and completely specify the product’s
detailed functions, than by the team’s ability to cram all the needed circuits into
a single board or chip. Thus, a modern academic program must necessarily
emphasize design methodologies and software tools, including hardware
description languages (HDLs), that allow very large, hierarchical designs to be
accomplished by teams of designers.

On one hand, with HDLs, we see the level of abstraction for typical designs
moving higher, above the level of individual gates and flip-flops. But at the same
time, the increased speed and density of digital circuits at both the chip and
board level is forcing many digital designers to be more competent at a lower,
electrical circuit level.

The most employable and ultimately successful digital designers are
skilled, or at least conversant, at both levels of abstraction. This book gives you

DDPP5.book Page xv Tuesday, March 28, 2017 5:46 PM

xvi Preface

the opportunity to learn the basics at the high level (HDLs), at the low level
(electrical circuits), and throughout the “vast middle” (gates, flip-flops, and
higher-level digital-design building blocks).

Target Audience
The material in this book is appropriate for introductory and second courses on
digital logic design in electrical or computer engineering or computer science
curricula. Computer science students who are unfamiliar with basic electronics
concepts or who just aren't interested in the electrical behavior of digital devices
may wish to skip Chapter 14; the rest of the book is written to be independent of
this material, as long as you understand the basics in Chapter 1. On the other
hand, anyone with a basic electronics background who wants to get up to speed
on digital electronics can do so by reading Chapter 14. In addition, students with
no electronics background can get the basics by reading a 20-page electronics
tutorial at the author’s website, www.ddpp.com.

Although this book's starting level is introductory, it goes beyond that and
contains much more material than can be taught in a typical introductory course.
I expect that typical courses will use no more than two-thirds of the material
here, but each will use a different two thirds. Therefore, I’ve left it to the individ-
ual instructors and independent readers to tailor their reading to their own needs.
To help these choices along, though, I've marked the headings of optional sec-
tions with an asterisk. In general, these sections can be skipped without any loss
of continuity in the non-optional sections that follow. Also, the material in the
sidebars (aka “boxed comments”) is generally optional.

Undoubtedly, some people will use this book in second courses and in lab-
oratory courses. Advanced students will want to skip the basics and get right into
the fun stuff. Once you know the basics, some of the most important and fun
stuff is in the many sections and examples of digital design using Verilog.

All readers should make good use of the comprehensive index and of the
marginal notes throughout the text that call attention to definitions and impor-
tant topics. Maybe the highlighted topics in this section were more marginal than
important, but I just wanted to show off my text formatting system.

Chapter Descriptions
What follows is a list of short descriptions of this book's fifteen chapters. This
may remind you of the section in typical software guides, “For People Who Hate
Reading Manuals.” If you read this list, then maybe you don't have to read the
rest of the book.

• Chapter 1 gives a few basic definitions and a preview of a few important
topics. It also has a little bit on digital circuits, to enable readers to handle
the rest of the book without Chapter 14’s “deep dive.”

introductory courses

electronics concepts

optional sections

sidebars
boxed comments
second courses
laboratory courses
fun stuff

marginal notes
marginal pun

DDPP5.book Page xvi Tuesday, March 28, 2017 5:46 PM

Preface xvii

• Chapter 2 is an introduction to binary number systems and codes. Readers
who are already familiar with binary number systems from a software
course should still read Sections 2.10–2.13 to get an idea of how binary
codes are used by hardware. Advanced students can get a nice introduction
to error-detecting codes by reading Sections 2.14 and 2.15. The material in
Section 2.16.1 should be read by everyone; it is used in a lot of modern
systems.

• Chapter 3 teaches combinational logic design principles, including
switching algebra and combinational-circuit analysis, synthesis, and
minimization.

• Chapter 4 introduces various digital-design practices, starting with docu-
mentation standards, probably the most important practice for aspiring
designers to start practicing. Next, it introduces timing concepts, especially
for combinational circuits, and it ends with a discussion of HDLs, design
flow, and tools.

• Chapter 5 is a tutorial and reference on Verilog, the HDL that is used
throughout the rest of the book. The first few sections should be read by
all, but some readers may wish to skip the rest until it’s needed, since new
Verilog constructs are summarized in later chapters “on the fly” the first
time they’re used, mainly in Chapter 6.

• Chapter 6 describes two “universal” combinational building blocks, ROMs
and PLDs. It then describes the two most commonly used functional build-
ing blocks, decoders and multiplexers; gate-level and Verilog-based
designs are shown for each. It’s possible for the reader to go from here
directly to state machines in Chapter 9, and come back to 7 and 8 later.

NOT AS LONG
AS IT SEEMS

A few reviewers have complained about the length of previous editions of this book.
The present edition is a little shorter, but also please keep in mind:

• You don't have to read everything. The headings of sections and subsections
that are optional for most readers are marked with an asterisk.

• Stuff written in these “boxed comments” (a.k.a. sidebars) is usually optional too.

• I asked the publisher to print this book in a larger font (11 point) than is typical
for technical texts (10 point). This is easier on your eyes and mine, and it also
allows me to put in more figures and tables while still keeping most of them on
the same facing pages as the referring text. (I do the page layout myself and pay
a lot of attention to this.)

• I write my books to be “reference quality,” with comprehensive topic coverage
and excellent indexing, so you can come back to them in later courses, or later
in your career to refresh or even to learn new things. The cost of books being
what they are these days, you may not keep this book, but the option is there.

DDPP5.book Page xvii Tuesday, March 28, 2017 5:46 PM

xviii Preface

• Chapter 7 continues the discussion of combinational building blocks, at
both the gate level and in Verilog, for three-state devices, priority encoders,
XOR and parity functions, and comparators, then concludes with a Verilog
example design for a nontrivial “random logic” function.

• Chapter 8 covers combinational circuits for arithmetic functions, including
adding and subtracting, shifting, multiplying, and dividing.

• Chapter 9 is a traditional introduction to state machines using D flip-flops,
including analysis and synthesis using state tables, state diagrams, ASM
charts, and Verilog.

• Chapter 10 introduces other sequential elements including latches, more
edge-triggered devices, and their Verilog behavioral models. This chapter
also describes the sequential elements in a typical FPGA and, for interested
readers, has sections on sequential PLDs and feedback sequential circuits.

• Chapter 11 is focused on the two most commonly used sequential-circuit
building blocks, counters and shift registers, and their applications. Both
gate-level and Verilog-based examples are given.

• Chapter 12 gives a lot more details on how to model state machines using
Verilog and gives many examples.

• Chapter 13 discusses important practical concepts for sequential-circuit
design, including synchronous system structure, clocking and clock skew,
asynchronous inputs and metastability, and a detailed two-clock synchro-
nization example in Verilog.

• Chapter 14 describes digital circuit operation, placing primary emphasis
on the external electrical characteristics of logic devices. The starting point
is a basic electronics background including voltage, current, and Ohm's
law. This chapter may be omitted by readers who aren't interested in how
to make real circuits work, or who have the luxury of having someone else
to do the dirty work.

• Chapter 15 is all about memory devices and FPGAs. Memory coverage
includes read-only memory and static and dynamic read/write memories in
terms of both internal circuitry and functional behavior. The last section
gives more details of an FPGA architecture, the Xilinx 7 series.

Most of the chapters contain references, drill problems, and exercises. Drill
problems are typically short-answer or “turn-the-crank” questions that can be
answered directly based on the text material, while exercises typically require a
little more thinking. The drill problems in Chapter 14 are particularly extensive
and are designed to allow non-EEs to ease into this material.

DDPP5.book Page xviii Tuesday, March 28, 2017 5:46 PM

Preface xix

Differences from the Fourth Edition
For readers and instructors who have used previous editions of this book, this
fifth edition has several key differences in addition to general updates:

• This edition covers Verilog only; there’s no VHDL. Bouncing between the
languages is just too distracting. Moreover, Verilog and its successor
SystemVerilog are now the HDLs of choice in non-government settings.
See the excellent, well-reasoned and nicely documented paper by Steve
Golson and Leah Clark, “Language Wars in the 21st Century: Verilog
versus VHDL—Revisited” (2016 Synopsys Users Group Conference), and
jump to the last section if you don’t want to read the whole article.

• This edition has many more HDL examples and a much greater emphasis
on design flow and on test benches, including purely stimulative as well as
self-checking ones.

• To make the book more accessible to non-EE computer engineering stu-
dents, detailed coverage of CMOS circuits has been moved to Chapter 14
and a minimal amount of electronics has been added to Chapter 1 so that
the CMOS chapter can be skipped entirely if desired.

• TTL, SSI, MSI, 74-series logic, PLDs, and CPLDs have been deprecated.

• Karnaugh-map-based minimization has finally been, well, minimized.

• While the book still has a comprehensive Verilog tutorial and reference in
Chapter 5, Verilog concepts are interspersed “just in time” in sidebars in
Chapters 6 and 7 so students can go straight to “the good stuff” there.

• There is a greater emphasis on FPGA-based design, FPGA architectural
features, and synthesis results and trade-offs.

• The chapter on combinational-logic elements has been split into three, to
facilitate going straight to state machines after just the first if desired. This
also allows more coverage of arithmetic circuits in the last.

• An entire chapter has been devoted to state-machine design in Verilog,
including many examples.

• The chapter on synchronous design methodology now contains a detailed
control-unit-plus-datapath example and a comprehensive example on
crossing clocking domains using asynchronous FIFOs.

• The jokes aren’t quite as bad, I hope.

Digital-Design Software Tools
All of the Verilog examples in this book have been compiled and tested using the
Xilinx Vivado® suite, which includes tools for targeting Verilog, SystemVerilog,
and VHDL designs to Xilinx 7-series FPGAs. However, in general there’s no

DDPP5.book Page xix Tuesday, March 28, 2017 5:46 PM

xx Preface

special requirement for the examples to be compiled and synthesized using
Vivado or even to be targeted to Xilinx or any other FPGA. Also, this book does
not contain a tutorial on Vivado; Xilinx has plenty of online materials for that.
Thus, a reader will able to use this text with any Verilog tools, including the ones
described below.

The free “Webpack” edition of Vivado can be downloaded from Xilinx; it
supports smaller 7-series FPGAs, Zynq® SoC-capable FPGAs, and evaluation
boards. It’s a big download, over 10 gigabytes, but it’s a comprehensive tool
suite. Pre-7-series FPGAs as well as the smaller Zynq FPGAs are supported by
the Xilinx ISE® (Integrated Software Environment) tool suite, also available in a
free “Webpack” edition. Note that ISE is supported in “legacy” mode and has
not been updated since 2013. For either suite, go to www.xilinx.com and search
for “Webpack download.”

If you’re using Altera (now part of Intel) devices, they also have a good
University Program and tools; search for “Altera university support” and then
navigate to the “For Students” page. Free tools include their Quartus™ Prime
Lite Edition for targeting Verilog, SystemVerilog, and VHDL designs to their
entry-level FPGAs and CPLDs, and a starter edition of industry-standard
ModelSim® software for simulating them.

Both Altera and Xilinx offer inexpensive evaluation boards suitable for
implementing FPGA-based student projects, either directly or through third par-
ties. Such boards may include switches and LEDs, analog/digital converters and
motion sensors, and even USB and VGA interfaces, and may cost less than $100
through the manufacturers’ university programs.

Another long-time source of professional digital design tools with good
university support is Aldec, Inc. (www.aldec.com). They offer a student edition
of their popular Active-HDL™ tool suite for design entry and simulation;
besides the usual HDL tools, it also includes block-diagram and state-machine
graphical editors, and its simulator also includes a waveform editor for creating
stimuli interactively. The Active-HDL simulator can be installed as a plug-in
with Vivado to use its features instead of the Vivado simulator.

All of the above tools, as well as most other engineering design tools, run
on Windows PCs, so if you are a Mac fan, get used to it! Depending on the tools,
you may or may not have some success running them on a Mac in a Windows
emulation environment like VMware’s. The most important thing you can do to
make the tools “go fast” on your PC is to equip it with a solid-state disk drive
(SSD), not a rotating one.

Even if you’re not ready to do your own original designs, you can use any
of the above tools to try out and modify the examples in the text, since the source
code for all of them is available online, as discussed next.

DDPP5.book Page xx Tuesday, March 28, 2017 5:46 PM

Preface xxi

Engineering Resources and www.ddpp.com
Abundant support materials for this book are available on the Web at Pearson’s
“Engineering Resources” site. At the time of publication, the Pearson link was
media.pearsoncmg.com/bc/abp/engineering-resources, but you know
how it goes with long links. It’s easier just to go to the author’s website,
www.ddpp.com, which contains a link to Pearson’s site. Also, the author’s site
will contain the latest errata and other materials that may be added or changed
“on the fly,” and perhaps even a blog someday.

Resources at the Pearson site include downloadable source-code files for
all Verilog modules in the book, selected drill and exercise solutions, and supple-
mentary materials, such as a 20-page introduction to basic electronics concepts
for non-EEs.

For Instructors
Pearson maintains a website with a comprehensive set of additional materials for
instructors only. Go to the Engineering Resources site mentioned above, navi-
gate to this book, and click on the “Instructor Resources” link. Registration is
required, and it may take a few days for your access to be approved. Resources
include additional drill and exercise solutions, additional source code, more
exercises, and line art and tables from the book for use in your lectures. Upon
request, materials from previous editions may also be posted there to aid instruc-
tors who are transitioning their courses from older technology.

Other resources for instructors include the author’s site, www.ddpp.com,
and the university programs at Xilinx, Altera, and Aldec; go to www.ddpp.com
for up-to-date links to them. The manufacturer sites offer a variety of product
materials, course materials, and discounts on chips and boards you can use in
digital-design lab courses, and in some cases “full-strength” tool packages that
you can obtain at a steep discount for use in your advanced courses and research.

Errors
Warning: This book may contain errors. The author and the publisher assume no
liability for any damage—incidental, brain, or otherwise—caused by errors.

There, that should make the lawyers happy. Now, to make you happy, let
me assure you that a great deal of care has gone into the preparation of this book
to make it as error free as possible. I am anxious to learn of the remaining errors
so that they may be fixed in future printings, editions, and spin-offs. Therefore, I
will pay $5 via PayPal to the first finder of each undiscovered error—technical,
typographical, or otherwise—in the printed book. Please email your comments
to me by using the appropriate link at www.ddpp.com.

An up-to-date list of discovered errors can always be obtained using the
appropriate link at www.ddpp.com. It will be a very short file transfer, I hope.

DDPP5.book Page xxi Tuesday, March 28, 2017 5:46 PM

xxii Preface

Acknowledgements
Many people helped make this book possible. Most of them helped with the first
four editions and are acknowledged there. For the ideas on the “principles” side
of this book, I still owe great thanks to my teacher, research advisor, and friend,
the late Ed McCluskey. On the “practices” side, I got good advice from my
friend Jesse Jenkins, from Xilinx staffers Parimal Patel and Trevor Bauer, and
from fellow McCluskey advisee Prof. Subhasish Mitra of Stanford.

Since the fourth edition was published, I have received many helpful
comments from readers. In addition to suggesting or otherwise motivating many
improvements, readers have spotted dozens of typographical and technical
errors whose fixes are incorporated in this fifth edition.

The most substantial influence and contribution to this edition came from
ten anonymous (to me) academic reviewers, all of whom teach digital design
courses using my fourth edition or one of its competitors. I did my best to incor-
porate their suggestions, which often meant deleting material that experienced
designers like me (aka old-timers) are perhaps too attached to, while greatly
enhancing the coverage of modern concepts in HDL-based design flow, test
benches, synthesis, and more.

My sponsoring editor at Pearson, Julie Bai, deserves thanks for shepherd-
ing this project over the past couple of years; she’s my first editor who actually
took a digital design course using a previous edition of this book. Unfortunately,
she’s also the fourth or fifth editor who has changed jobs after almost completing
one of my book projects, convincing me that working with me inevitably leads to
an editor’s burnout or success or both. Special thanks go to her boss’s boss,
Marcia Horton, who has kept an eye on my projects for a couple of decades, and
to Scott Disanno and Michelle Bayman, who guided the production and launch
processes for this edition.

Thanks also go to artist Peter Crowell, whose paintings I discovered on
Ebay when editor Julie Bai suggested we do a cover based on Piet Mondrian’s
work, some of which she said “almost looks like an abstract take on logic
circuits.” Crowell’s “Tuesday Matinee” fits the bill beautifully. His painting is
“tiled” on the cover and in the chapter-opening art in much the same way that
logic blocks and interconnect are tiled in an FPGA. Our cover designer Marta
Samsel took my engineering-ish concept and adapted it beautifully.

Finally, my wife Joanne Jacobs was very supportive of this project, letting
me work in peace “upstairs” while she worked “downstairs” on her education
blog. She didn’t even complain that the Christmas tree was still up in February.

John F. Wakerly
Los Altos, California

DDPP5.book Page xxii Tuesday, March 28, 2017 5:46 PM

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1

c h a p t e r 1
Introduction

elcome to the world of digital design. Perhaps you’re a com-
puter science student who knows all about computer software
and programming, but you’re still trying to figure out how all
that fancy hardware could possibly work. Or perhaps you’re
an electrical engineering student who already knows

something about analog electronics and circuit design, but you wouldn’t
know a bit if it bit you. No matter. Starting from a fairly basic level, this book
will show you how to design digital circuits and subsystems.

We’ll give you the basic principles that you need to figure things out,
and we’ll give you lots of examples. Along with principles, we’ll try to con-
vey the flavor of real-world digital design by discussing practical matters
whenever possible. And I, the author, will often refer to myself as “we” in
the hope that you’ll be drawn in and feel that we’re walking through the
learning process together.

1.1 About Digital Design
Some people call it “logic design.” That’s OK, but ultimately the goal of
design is to build systems. To that end, we’ll cover a whole lot more in this
text than logic equations and theorems.

This book claims to be about principles and practices. Most of the
principles that we present will continue to be important years from now;

W

Hi, I'm John

DDPP5.book Page 1 Tuesday, March 28, 2017 5:33 PM

2 Chapter 1 Introduction

some may be applied in ways that have not even been discovered yet. As for
practices, they are sure to be a little different from what’s presented here by the
time you start working in the field, and they will continue to change throughout
your career. So you should treat the “practices” material in this book as a way to
reinforce principles, and as a way to learn design methods by example.

One of the book’s goals is to present enough about basic principles for you
to know what’s happening when you use software tools to “turn the crank” for
you. The same basic principles can help you get to the root of problems when the
tools happen to get in your way.

Listed in the box below are several key points that you should learn
through your studies with this text. Many of these items may not make sense to
you right now, but you can come back and review them later.

Digital design is engineering, and engineering means “problem solving.”
My experience is that only 5% to 10% of digital design is “the fun stuff”—the
creative part of design, the flash of insight, the invention of a new approach.
Much of the rest is just “turning the crank.” To be sure, turning the crank is much

IMPORTANT
THEMES IN

DIGITAL DESIGN

• Good tools do not guarantee good design, but they help a lot by taking the pain
out of doing things right.

• Digital circuits have analog characteristics.

• Know when to worry and when not to worry about the analog aspects of digital
design.

• Transistors and all the digital components built with them are cheap and plentiful;
make sensible trade-offs between minimizing the size of your designs and your
engineering time.

• Always document your designs to make them understandable to yourself and to
others.

• Use consistent coding, organizational, and documentation styles in your HDL-
based designs, following your company’s guidelines.

• Understand and use standard functional building blocks.

• State-machine design is like programming; approach it that way.

• Design for minimum cost at the system level, including your own engineering
effort as part of the cost.

• Design for testability and manufacturability.

• Use programmable logic to simplify designs, reduce cost, and accommodate last-
minute modifications.

• Avoid asynchronous design. Practice synchronous design until a better method-
ology comes along (if ever).

• Pinpoint the unavoidable asynchronous interfaces between different subsystems
and the outside world, and provide reliable synchronizers.

DDPP5.book Page 2 Tuesday, March 28, 2017 5:33 PM

1.2 Analog versus Digital 3

easier now than it was 25 or even 10 years ago, but you still can’t spend 100% or
even 50% of your time on the fun stuff.

Besides the fun stuff and turning the crank, there are many other areas in
which a successful digital designer must be competent, including the following:

• Debugging. It’s next to impossible to be a good designer without being a
good troubleshooter. Successful debugging takes planning, a systematic
approach, patience, and logic: if you can’t discover where a problem is,
find out where it is not!

• Business requirements and practices. A digital designer’s work is affected
by a lot of non-engineering factors, including documentation standards,
component availability, feature definitions, target specifications, task
scheduling, office politics, and going to lunch with vendors.

• Risk-taking. When you begin a design project, you must carefully balance
risks against potential rewards and consequences, in areas ranging from
component selection (Will it be available when I’m ready to build the first
prototype?) to schedule commitments (Will I still have a job if I’m late?).

• Communication. Eventually, you’ll hand off your successful designs to
other engineers, other departments, and customers. Without good commu-
nication skills, you’ll never complete this step successfully. Keep in mind
that communication includes not just transmitting but also receiving—
learn to be a good listener!

In the rest of this chapter, and throughout the text, I’ll continue to state
some opinions about what’s important and what is not. I think I’m entitled to do
so as a moderately successful practitioner of digital design.

1.2 Analog versus Digital
Analog devices and systems process time-varying signals that can take on any
value across a continuous range of voltage, current, or other measurable physical
quantity. So do digital circuits and systems; the difference is that we can pretend
that they don’t! A digital signal is modeled as taking on, at any time, only one
of two discrete values, which we call 0 and 1 (or LOW and HIGH, FALSE and
TRUE, negated and asserted, Frank and Teri, or whatever).

Digital computers have been around since the 1940s, and they’ve been in
widespread commercial use since the 1960s. Yet only in the past few decades has
the “digital revolution” spread to many other aspects of life. Examples of once-
analog systems that have now “gone digital” include the following:

• Still pictures. Twenty years ago, the majority of cameras still used silver-
halide film to record images. Today, inexpensive digital cameras and
smartphones record a picture as a 1920×1080 or larger array of pixels,
where each pixel stores the intensities of its red, green, and blue color com-

analog

digital

0
1

DDPP5.book Page 3 Tuesday, March 28, 2017 5:33 PM

4 Chapter 1 Introduction

ponents as 8 or more bits each. This data, almost 50 million bits in this
example, is usually processed and compressed in JPEG format down to as
few as 5% of the original number of bits. So, digital cameras rely on both
digital storage and digital processing.

• Video recordings. “Films” are no longer stored on film. A Blu-ray disc
(BD) stores video in a highly compressed digital format called MPEG-4.
This standard compresses a small fraction of the individual video frames
into a format similar to JPEG, and encodes each other frame as the differ-
ence between it and the previous one. The capacity of a dual-layer BD is
about 400 billion bits, sufficient for about 2 hours of high-definition video.

• Audio recordings. Once made exclusively by impressing analog wave-
forms onto magnetic tape or vinyl, audio recordings are now made and
delivered digitally, using a sequence of 16- to 24-bit values corresponding
to samples of the original analog waveform, and up to 192,000 samples per
second per audio channel. The number of bits, samples, and channels
depends on the recording format; a compact disc (CD) stores two channels
of 44,100 16-bit values for up to 73 minutes of stereo audio. Like a still
picture or a video recording, an audio recording may be compressed for
delivery to or storage on a device such as a smartphone, typically using a
format called MP3.

• Automobile carburetors. Once controlled strictly by mechanical linkages
(including clever “analog” mechanical devices that sensed temperature,
pressure, etc.), automobile engines are now controlled by embedded
microprocessors. Various electronic and electromechanical sensors con-
vert engine conditions into numbers that the microprocessor can examine
to determine how to control the flow of fuel and oxygen to the engine. The
microprocessor’s output is a time-varying sequence of numbers that
operate electromechanical actuators which, in turn, control the engine.

• The telephone system. It started out over a hundred years ago with analog
microphones and receivers connected to the ends of a pair of copper wires
(or was it string?). Even today, many homes still use analog telephones,
which transmit analog signals to the phone company’s central office (CO).
However, in the majority of COs, these analog signals are converted into a
digital format before they are routed to their destinations, be they in the
same CO or across the world. For many years, private branch exchanges
(PBXs) used by businesses have carried the digital format all the way to the
desktop. Now most businesses, COs, and traditional telephony service
providers have converted to integrated systems that combine digital voice
with data traffic over a single IP (Internet Protocol) network.

• Traffic lights. Stop lights used to be controlled by electromechanical timers
that would give the green light to each direction for a predetermined
amount of time. Later, relays were used in controllers that could activate

DDPP5.book Page 4 Tuesday, March 28, 2017 5:33 PM

1.2 Analog versus Digital 5

the lights according to the pattern of traffic detected by sensors embedded
in the pavement. Today’s controllers use microprocessors and can control
the lights in ways that maximize vehicle throughput or, in Sunnyvale,
California, frustrate drivers with all kinds of perverse behavior.

• Movie effects. Special effects used to be created exclusively with miniature
clay models, stop action, trick photography, and numerous overlays of film
on a frame-by-frame basis. Today, spaceships, cities, bugs, and monsters
are synthesized entirely using digital computers. Even actors and actresses
have been created or recreated using digital effects.

The electronics revolution has been going on for quite some time now, and
the “solid-state” revolution began with analog devices and applications like
transistors and transistor radios. So why has there now been a digital revolution?
There are in fact many reasons to favor digital circuits over analog ones,
including:

• Reproducibility of results. Given the same set of inputs (in both value and
time sequence), a properly designed digital circuit always produces exactly
the same results. The outputs of an analog circuit vary with temperature,
power-supply voltage, component aging, and other factors.

• Ease of design. Digital design, often called “logic design,” is logical. No
special math skills are needed, and the behavior of small logic circuits can
be mentally visualized without any special insights about the operation of
capacitors, transistors, or other devices that require calculus to model.

• Flexibility and functionality. Once a problem has been reduced to digital
form, it can be solved using a set of logical steps in space and time. For
example, you can design a digital circuit that scrambles your recorded
voice so it is absolutely indecipherable by anyone who does not have your
“key” (password), but it can be heard virtually undistorted by anyone who
does. Try doing that with an analog circuit.

• Programmability. You’re probably already quite familiar with digital com-
puters and the ease with which you can design, write, and debug programs
for them. Well, guess what? Most of digital design is done today by writing
“programs” too, in hardware description languages (HDLs).

While they’re not “programming” languages in the sense of C++ or Java,
HDLs allow both structure and function of a digital circuit to be specified
or modeled with language-based constructs rather than a circuit diagram.
Moreover, besides a compiler, an HDL also comes with simulation and
synthesis programs that are used to test the hardware model’s behavior
before any real hardware is built, and then to synthesize the model into a
circuit in a particular component technology. This saves a lot of work,
because the synthesized circuit typically has a lot more detail than the
model that generated it.

hardware description
language (HDL)

hardware model

DDPP5.book Page 5 Tuesday, March 28, 2017 5:33 PM

6 Chapter 1 Introduction

• Speed. Today’s digital devices are very fast. Individual transistors in the
fastest integrated circuits can switch in less than 10 picoseconds, and a
complex circuit built from these transistors can examine its inputs and pro-
duce an output in less than a nanosecond. A device incorporating such
circuits can produce a billion or more results per second.

• Economy. Digital circuits can provide a lot of functionality in a small
space. Circuits that are used repetitively can be “integrated” into a single
“chip” and mass-produced at very low cost, making possible throw-away
items like calculators, digital watches, and singing birthday cards. (You
may ask, “Is this such a good thing?” Never mind!)

• Steadily advancing technology. When you design a digital system, you
almost always know that there will be a faster, cheaper, or otherwise better
technology for it in a few years. Clever designers can accommodate these
expected advances during the initial design of a system, to forestall system
obsolescence and to add value for customers. For example, desktop com-
puters often have “expansion sockets” to accommodate faster processors
or larger memories than are available at the time of the computer’s
introduction.

So, that’s enough of a sales pitch on digital design. The rest of this chapter will
give you a bit more technical background to prepare you for the rest of the book.

PROGRAMS,
MODELS,

MODULES,
AND CODE

As you’ll see throughout this text, Verilog HDL examples look a lot like “programs”
and are even labeled as such. But generally they are not programs in the sense that
C++ or Java programs execute a sequence of instructions to produce a result. Rather,
they are models of hardware structures that receive input signals and produce output
signals on wires, and that’s something quite different. Since we’ll show you hard-
ware basics before we get into HDL models, you should be able to understand the
difference when we get there. To help you, we will avoid calling an HDL model a
“program.”

Verilog can also be used to write procedural programs called “test benches”
that do not model hardware. A test bench exercises a hardware model, applying a
sequence of inputs to it and observing the resulting outputs, and we will actually
sometimes call it a “program” and never a “model.”

To model a piece of hardware, Verilog typically uses statements in a construct
called a module, which may be stored in a single text file. We could call such a text
file either a module or a model, and we will. However, a complex piece of hardware
may be modeled hierarchically using multiple modules, so in that case, its model is
a collection of modules.

If none of the above terms seems quite appropriate for describing a particular
bit of Verilog, we may just call it Verilog “code,” for lack of a better short term.

DDPP5.book Page 6 Tuesday, March 28, 2017 5:33 PM

1.3 Analog Signals 7

1.3 Analog Signals
Marketing hype notwithstanding, we live in an analog world, not a digital one.
Voltages, currents, and other physical quantities in real circuits take on values
that are infinitely variable, depending on properties of the real devices that com-
prise the circuits. Because real values are continuously variable, we could use a
physical quantity such as a signal voltage in a circuit to represent a real number
(e.g., 3.14159265358979 volts represents the mathematical constant pi to 14
decimal digits of precision).

However, stability and accuracy in physical quantities are difficult to
obtain in real circuits. They can be affected by manufacturing variations, tem-
perature, power-supply voltage, cosmic rays, and noise created by other circuits,
among other things. If we used an analog voltage to represent pi, we might find
that instead of being an absolute mathematical constant, pi varied over a range of
10% or more.

Also, many mathematical and logical operations can be difficult or
impossible to perform with analog quantities. While it is possible with some
cleverness to build an analog circuit whose output voltage is the square root of its
input voltage, no one has ever built a 100-input, 100-output analog circuit whose
outputs are a set of voltages identical to the set of input voltages, but sorted
arithmetically.

1.4 Digital Logic Signals
Digital logic hides the pitfalls of the analog world by using digital signals,
where the infinite set of real values for a physical quantity are mapped into two
subsets corresponding to just two possible numbers or logic values: 0 and 1.
Thus, digital logic circuits can be analyzed and designed functionally, using
switching algebra, tables, and other abstract means to describe the operation of
well-behaved 0s and 1s in a circuit.

A logic value, 0 or 1, is often called a binary digit, or bit. If an application
requires more than two discrete values, additional bits may be used, with a set of
n bits representing 2n different values.

Examples of the physical phenomena used to represent bits in some
modern (and not-so-modern) digital technologies are given in Table 1-1. With

SHORT TIMES A millisecond (ms) is 10−3 second, and a microsecond (µs) is 10−6 second. A
nanosecond (ns) is just 10−9 second, and a picosecond (ps) is 10−12 second. In a
vacuum, light travels about a foot in a nanosecond, and an inch in 85 picoseconds.
With individual transistors in the fastest integrated circuits now switching in less
than 10 picoseconds, the speed-of-light delay between these transistors across a
half-inch-square silicon chip has become a limiting factor in circuit design.

digital logic
digital signals

logic values

binary digit
bit

DDPP5.book Page 7 Tuesday, March 28, 2017 5:33 PM

8 Chapter 1 Introduction

most phenomena, there is an undefined region between the 0 and 1 states (e.g.,
voltage = 1.0 V, dim light, capacitor slightly charged, etc.). This undefined
region is needed so the 0 and 1 states can be unambiguously defined and reliably
detected. Noise can more easily corrupt results if the boundaries separating the 0
and 1 states are too close to each other.

When discussing electronic logic circuits like CMOS, digital designers
often use the words “LOW” and “HIGH” in place of “0” and “1” to remind them
that they are dealing with real circuits, not abstract quantities:

LOW A signal in the range of algebraically lower voltages, which is
interpreted as a logic 0.

HIGH A signal in the range of algebraically higher voltages, which is
interpreted as a logic 1.

Table 1-1 Physical states representing bits in different logic and memory technologies.

State Representing Bit

Technology 0 1

Pneumatic logic Fluid at low pressure Fluid at high pressure

Relay logic Circuit open Circuit closed

Transistor-transistor logic (TTL) 0–0.8 V 2.0–5.0 V

Complementary metal-oxide
semiconductor (CMOS) 2-volt logic

0–0.5 V 1.5–2.0 V

Dynamic memory Capacitor discharged Capacitor charged

Nonvolatile, erasable memory Electrons trapped Electrons released

On-chip nonvolatile security key Fuse blown Fuse intact

Polymer memory Molecule in state A Molecule in state B

Fiber optics Light off Light on

Magnetic disk or tape Flux direction “north” Flux direction “south”

Compact disc (CD), digital versatile disc
(DVD), and Blu-ray disc (BD)

No pit Pit

Writable compact disc (CD-R) Dye in crystalline state Dye in noncrystalline state

STATE
TRANSITIONS

The last four technologies in Table 1-1 don’t actually use absolute states to represent
bit values. Rather, they use transitions (or absence of transitions) between states to
represent 0s and 1s using a code such as the Manchester code described on page 82.

LOW

HIGH

DDPP5.book Page 8 Tuesday, March 28, 2017 5:33 PM

1.5 Logic Circuits and Gates 9

Note that the assignments of 0 and 1 to LOW and HIGH are somewhat arbitrary.
Still, assigning 0 to LOW and 1 to HIGH seems natural and is called positive
logic, and that’s what we use in this book exclusively. The opposite assignment,
1 to LOW and 0 to HIGH, is not often used and is called negative logic.

Because a wide range of physical values represent the same binary value,
digital logic is highly immune to component and power-supply variations and
noise. Furthermore, buffer circuits can be used to regenerate (or amplify) “weak”
values into “strong” ones, so that digital signals can be transmitted over arbitrary
distances without loss of information. For example, using the voltage ranges in
the fourth row of Table 1-1, a buffer for 2-volt CMOS logic converts any LOW
input voltage into an output very close to 0.0 V, and any HIGH input voltage into
an output very close to 2.0 V.

1.5 Logic Circuits and Gates
A logic circuit can be represented with a minimum amount of detail simply

as a “black box” with a certain number of inputs and outputs. For example,
Figure 1-1 shows a logic circuit with three inputs and one output. However, this
representation does not describe how the circuit responds to input signals.

From the point of view of electronic circuit design, it takes a lot of informa-
tion to describe the precise electrical behavior of a circuit. However, since the
inputs of a digital logic circuit can be viewed as taking on only discrete 0 and 1
values, the circuit’s “logical” operation can be described with a table that ignores
electrical behavior and lists only discrete 0 and 1 values.

A logic circuit whose outputs depend only on its current inputs is called a
combinational circuit. Its operation is fully described by a truth table that lists
all combinations of input values and the output value(s) produced by each one.

positive logic
negative logic

buffer

THE DIGITAL
ABSTRACTION

Digital circuits are not exactly a binary version of alphabet soup—with all due
respect to our forthcoming descriptions like Figure 1-3, digital circuits don’t have
little 0s and 1s floating around in them. As you’ll see in Chapter 14, digital circuits
deal with analog voltages and currents and are built with analog components. The
“digital abstraction” allows analog behavior to be ignored in most cases, so circuits
can be modeled as if they really did process 0s and 1s.

Figure 1-1
“Black-box”
representation of a
3-input, 1-output
logic circuit.

logic circuit
X

Y

Z

F

Inputs Output

combinational circuit
truth table

DDPP5.book Page 9 Tuesday, March 28, 2017 5:33 PM

