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xv

PREFACE

This book is for everyone who wants to design and build real digital circuits. It
is based on the idea that, in order to do this, you have to grasp the fundamentals,
but at the same time you need to understand how things work in the real world.
Hence, the “principles and practices” theme.

The practice of digital design has undergone a major transformation during
the past 30 years, a direct result of the stunning increases in integrated-circuit
speed and density over the same time period. In the past, when digital designers
were building systems with thousands or at most tens of thousands of gates and
flip-flops, academic courses emphasized minimization and efficient use of chip
and board-level resources.

Today, a single chip can contain tens of millions of transistors and can be
programmed to create a system-on-a-chip that, using the technology of the past,
would have required hundreds of discrete chips containing millions of individual
gates and flip-flops. Successful product development nowadays is limited more
by the design team’s ability to correctly and completely specify the product’s
detailed functions, than by the team’s ability to cram all the needed circuits into
a single board or chip. Thus, a modern academic program must necessarily
emphasize design methodologies and software tools, including hardware
description languages (HDLs), that allow very large, hierarchical designs to be
accomplished by teams of designers.

On one hand, with HDLs, we see the level of abstraction for typical designs
moving higher, above the level of individual gates and flip-flops. But at the same
time, the increased speed and density of digital circuits at both the chip and
board level is forcing many digital designers to be more competent at a lower,
electrical circuit level. 

The most employable and ultimately successful digital designers are
skilled, or at least conversant, at both levels of abstraction. This book gives you
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xvi Preface

the opportunity to learn the basics at the high level (HDLs), at the low level
(electrical circuits), and throughout the “vast middle” (gates, flip-flops, and
higher-level digital-design building blocks).

Target Audience
The material in this book is appropriate for introductory and second courses on
digital logic design in electrical or computer engineering or computer science
curricula. Computer science students who are unfamiliar with basic electronics
concepts or who just aren't interested in the electrical behavior of digital devices
may wish to skip Chapter 14; the rest of the book is written to be independent of
this material, as long as you understand the basics in Chapter 1. On the other
hand, anyone with a basic electronics background who wants to get up to speed
on digital electronics can do so by reading Chapter 14. In addition, students with
no electronics background can get the basics by reading a 20-page electronics
tutorial at the author’s website, www.ddpp.com.

Although this book's starting level is introductory, it goes beyond that and
contains much more material than can be taught in a typical introductory course.
I expect that typical courses will use no more than two-thirds of the material
here, but each will use a different two thirds. Therefore, I’ve left it to the individ-
ual instructors and independent readers to tailor their reading to their own needs.
To help these choices along, though, I've marked the headings of optional sec-
tions with an asterisk. In general, these sections can be skipped without any loss
of continuity in the non-optional sections that follow. Also, the material in the
sidebars (aka “boxed comments”) is generally optional.

Undoubtedly, some people will use this book in second courses and in lab-
oratory courses. Advanced students will want to skip the basics and get right into
the fun stuff. Once you know the basics, some of the most important and fun
stuff is in the many sections and examples of digital design using Verilog.

All readers should make good use of the comprehensive index and of the
marginal notes throughout the text that call attention to definitions and impor-
tant topics. Maybe the highlighted topics in this section were more marginal than
important, but I just wanted to show off my text formatting system.

Chapter Descriptions
What follows is a list of short descriptions of this book's fifteen chapters. This
may remind you of the section in typical software guides, “For People Who Hate
Reading Manuals.” If you read this list, then maybe you don't have to read the
rest of the book. 

• Chapter 1 gives a few basic definitions and a preview of a few important
topics. It also has a little bit on digital circuits, to enable readers to handle
the rest of the book without Chapter 14’s “deep dive.”

introductory courses

electronics concepts

optional sections

sidebars
boxed comments
second courses
laboratory courses
fun stuff

marginal notes
marginal pun

DDPP5.book  Page xvi  Tuesday, March 28, 2017  5:46 PM



Preface xvii

• Chapter 2 is an introduction to binary number systems and codes. Readers
who are already familiar with binary number systems from a software
course should still read Sections 2.10–2.13 to get an idea of how binary
codes are used by hardware. Advanced students can get a nice introduction
to error-detecting codes by reading Sections 2.14 and 2.15. The material in
Section 2.16.1 should be read by everyone; it is used in a lot of modern
systems.

• Chapter 3 teaches combinational logic design principles, including
switching algebra and combinational-circuit analysis, synthesis, and
minimization. 

• Chapter 4 introduces various digital-design practices, starting with docu-
mentation standards, probably the most important practice for aspiring
designers to start practicing. Next, it introduces timing concepts, especially
for combinational circuits, and it ends with a discussion of HDLs, design
flow, and tools.

• Chapter 5 is a tutorial and reference on Verilog, the HDL that is used
throughout the rest of the book. The first few sections should be read by
all, but some readers may wish to skip the rest until it’s needed, since new
Verilog constructs are summarized in later chapters “on the fly” the first
time they’re used, mainly in Chapter 6.

• Chapter 6 describes two “universal” combinational building blocks, ROMs
and PLDs. It then describes the two most commonly used functional build-
ing blocks, decoders and multiplexers; gate-level and Verilog-based
designs are shown for each. It’s possible for the reader to go from here
directly to state machines in Chapter 9, and come back to 7 and 8 later.

NOT AS LONG
AS IT SEEMS

A few reviewers have complained about the length of previous editions of this book.
The present edition is a little shorter, but also please keep in mind:

• You don't have to read everything.  The headings of sections and subsections
that are optional for most readers are marked with an asterisk.

• Stuff written in these “boxed comments” (a.k.a. sidebars) is usually optional too.

• I asked the publisher to print this book in a larger font (11 point) than is typical
for technical texts (10 point).  This is easier on your eyes and mine, and it also
allows me to put in more figures and tables while still keeping most of them on
the same facing pages as the referring text.  (I do the page layout myself and pay
a lot of attention to this.)

• I write my books to be “reference quality,” with comprehensive topic coverage
and excellent indexing, so you can come back to them in later courses, or later
in your career to refresh or even to learn new things. The cost of books being
what they are these days, you may not keep this book, but the option is there.
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xviii Preface

• Chapter 7 continues the discussion of combinational building blocks, at
both the gate level and in Verilog, for three-state devices, priority encoders,
XOR and parity functions, and comparators, then concludes with a Verilog
example design for a nontrivial “random logic” function.

• Chapter 8 covers combinational circuits for arithmetic functions, including
adding and subtracting, shifting, multiplying, and dividing.

• Chapter 9 is a traditional introduction to state machines using D flip-flops,
including analysis and synthesis using state tables, state diagrams, ASM
charts, and Verilog.

• Chapter 10 introduces other sequential elements including latches, more
edge-triggered devices, and their Verilog behavioral models. This chapter
also describes the sequential elements in a typical FPGA and, for interested
readers, has sections on sequential PLDs and feedback sequential circuits.

• Chapter 11 is focused on the two most commonly used sequential-circuit
building blocks, counters and shift registers, and their applications. Both
gate-level and Verilog-based examples are given.

• Chapter 12 gives a lot more details on how to model state machines using
Verilog and gives many examples.

• Chapter 13 discusses important practical concepts for sequential-circuit
design, including synchronous system structure, clocking and clock skew,
asynchronous inputs and metastability, and a detailed two-clock synchro-
nization example in Verilog.

• Chapter 14 describes digital circuit operation, placing primary emphasis
on the external electrical characteristics of logic devices. The starting point
is a basic electronics background including voltage, current, and Ohm's
law. This chapter may be omitted by readers who aren't interested in how
to make real circuits work, or who have the luxury of having someone else
to do the dirty work.

• Chapter 15 is all about memory devices and FPGAs. Memory coverage
includes read-only memory and static and dynamic read/write memories in
terms of both internal circuitry and functional behavior. The last section
gives more details of an FPGA architecture, the Xilinx 7 series.

Most of the chapters contain references, drill problems, and exercises. Drill
problems are typically short-answer or “turn-the-crank” questions that can be
answered directly based on the text material, while exercises typically require a
little more thinking. The drill problems in Chapter 14 are particularly extensive
and are designed to allow non-EEs to ease into this material.
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Preface xix

Differences from the Fourth Edition
For readers and instructors who have used previous editions of this book, this
fifth edition has several key differences in addition to general updates:

• This edition covers Verilog only; there’s no VHDL. Bouncing between the
languages is just too distracting. Moreover, Verilog and its successor
SystemVerilog are now the HDLs of choice in non-government settings.
See the excellent, well-reasoned and nicely documented paper by Steve
Golson and Leah Clark, “Language Wars in the 21st Century: Verilog
versus VHDL—Revisited” (2016 Synopsys Users Group Conference), and
jump to the last section if you don’t want to read the whole article.

• This edition has many more HDL examples and a much greater emphasis
on design flow and on test benches, including purely stimulative as well as
self-checking ones.

• To make the book more accessible to non-EE computer engineering stu-
dents, detailed coverage of CMOS circuits has been moved to Chapter 14
and a minimal amount of electronics has been added to Chapter 1 so that
the CMOS chapter can be skipped entirely if desired.

• TTL, SSI, MSI, 74-series logic, PLDs, and CPLDs have been deprecated.

• Karnaugh-map-based minimization has finally been, well, minimized.

• While the book still has a comprehensive Verilog tutorial and reference in
Chapter 5, Verilog concepts are interspersed “just in time” in sidebars in
Chapters 6 and 7 so students can go straight to “the good stuff” there.

• There is a greater emphasis on FPGA-based design, FPGA architectural
features, and synthesis results and trade-offs.

• The chapter on combinational-logic elements has been split into three, to
facilitate going straight to state machines after just the first if desired. This
also allows more coverage of arithmetic circuits in the last.

• An entire chapter has been devoted to state-machine design in Verilog,
including many examples.

• The chapter on synchronous design methodology now contains a detailed
control-unit-plus-datapath example and a comprehensive example on
crossing clocking domains using asynchronous FIFOs.

• The jokes aren’t quite as bad, I hope.

Digital-Design Software Tools
All of the Verilog examples in this book have been compiled and tested using the
Xilinx Vivado® suite, which includes tools for targeting Verilog, SystemVerilog,
and VHDL designs to Xilinx 7-series FPGAs. However, in general there’s no
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special requirement for the examples to be compiled and synthesized using
Vivado or even to be targeted to Xilinx or any other FPGA. Also, this book does
not contain a tutorial on Vivado; Xilinx has plenty of online materials for that.
Thus, a reader will able to use this text with any Verilog tools, including the ones
described below.

The free “Webpack” edition of Vivado can be downloaded from Xilinx; it
supports smaller 7-series FPGAs, Zynq® SoC-capable FPGAs, and evaluation
boards. It’s a big download, over 10 gigabytes, but it’s a comprehensive tool
suite. Pre-7-series FPGAs as well as the smaller Zynq FPGAs are supported by
the Xilinx ISE® (Integrated Software Environment) tool suite, also available in a
free “Webpack” edition. Note that ISE is supported in “legacy” mode and has
not been updated since 2013. For either suite, go to www.xilinx.com and search
for “Webpack download.”

If you’re using Altera (now part of Intel) devices, they also have a good
University Program and tools; search for “Altera university support” and then
navigate to the “For Students” page. Free tools include their Quartus™ Prime
Lite Edition for targeting Verilog, SystemVerilog, and VHDL designs to their
entry-level FPGAs and CPLDs, and a starter edition of industry-standard
ModelSim® software for simulating them. 

Both Altera and Xilinx offer inexpensive evaluation boards suitable for
implementing FPGA-based student projects, either directly or through third par-
ties. Such boards may include switches and LEDs, analog/digital converters and
motion sensors, and even USB and VGA interfaces, and may cost less than $100
through the manufacturers’ university programs.

Another long-time source of professional digital design tools with good
university support is Aldec, Inc. (www.aldec.com). They offer a student edition
of their popular Active-HDL™ tool suite for design entry and simulation;
besides the usual HDL tools, it also includes block-diagram and state-machine
graphical editors, and its simulator also includes a waveform editor for creating
stimuli interactively. The Active-HDL simulator can be installed as a plug-in
with Vivado to use its features instead of the Vivado simulator.

All of the above tools, as well as most other engineering design tools, run
on Windows PCs, so if you are a Mac fan, get used to it! Depending on the tools,
you may or may not have some success running them on a Mac in a Windows
emulation environment like VMware’s. The most important thing you can do to
make the tools “go fast” on your PC is to equip it with a solid-state disk drive
(SSD), not a rotating one.

Even if you’re not ready to do your own original designs, you can use any
of the above tools to try out and modify the examples in the text, since the source
code for all of them is available online, as discussed next.
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Engineering Resources and www.ddpp.com
Abundant support materials for this book are available on the Web at Pearson’s
“Engineering Resources” site. At the time of publication, the Pearson link was
media.pearsoncmg.com/bc/abp/engineering-resources, but you know
how it goes with long links. It’s easier just to go to the author’s website,
www.ddpp.com, which contains a link to Pearson’s site. Also, the author’s site
will contain the latest errata and other materials that may be added or changed
“on the fly,” and perhaps even a blog someday.

Resources at the Pearson site include downloadable source-code files for
all Verilog modules in the book, selected drill and exercise solutions, and supple-
mentary materials, such as a 20-page introduction to basic electronics concepts
for non-EEs.

For Instructors
Pearson maintains a website with a comprehensive set of additional materials for
instructors only. Go to the Engineering Resources site mentioned above, navi-
gate to this book, and click on the “Instructor Resources” link. Registration is
required, and it may take a few days for your access to be approved. Resources
include additional drill and exercise solutions, additional source code, more
exercises, and line art and tables from the book for use in your lectures. Upon
request, materials from previous editions may also be posted there to aid instruc-
tors who are transitioning their courses from older technology.

Other resources for instructors include the author’s site, www.ddpp.com,
and the university programs at Xilinx, Altera, and Aldec; go to www.ddpp.com
for up-to-date links to them. The manufacturer sites offer a variety of product
materials, course materials, and discounts on chips and boards you can use in
digital-design lab courses, and in some cases “full-strength” tool packages that
you can obtain at a steep discount for use in your advanced courses and research.

Errors
Warning: This book may contain errors. The author and the publisher assume no
liability for any damage—incidental, brain, or otherwise—caused by errors.

There, that should make the lawyers happy. Now, to make you happy, let
me assure you that a great deal of care has gone into the preparation of this book
to make it as error free as possible. I am anxious to learn of the remaining errors
so that they may be fixed in future printings, editions, and spin-offs. Therefore, I
will pay $5 via PayPal to the first finder of each undiscovered error—technical,
typographical, or otherwise—in the printed book. Please email your comments
to me by using the appropriate link at www.ddpp.com. 

An up-to-date list of discovered errors can always be obtained using the
appropriate link at www.ddpp.com. It will be a very short file transfer, I hope.
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1

c h a p t e r 1
Introduction

elcome to the world of digital design. Perhaps you’re a com-
puter science student who knows all about computer software
and programming, but you’re still trying to figure out how all
that fancy hardware could possibly work. Or perhaps you’re
an electrical engineering student who already knows

something about analog electronics and circuit design, but you wouldn’t
know a bit if it bit you. No matter. Starting from a fairly basic level, this book
will show you how to design digital circuits and subsystems.

We’ll give you the basic principles that you need to figure things out,
and we’ll give you lots of examples. Along with principles, we’ll try to con-
vey the flavor of real-world digital design by discussing practical matters
whenever possible. And I, the author, will often refer to myself as “we” in
the hope that you’ll be drawn in and feel that we’re walking through the
learning process together.

1.1 About Digital Design
Some people call it “logic design.” That’s OK, but ultimately the goal of
design is to build systems. To that end, we’ll cover a whole lot more in this
text than logic equations and theorems.

This book claims to be about principles and practices. Most of the
principles that we present will continue to be important years from now;

W

Hi, I'm John . . . .

DDPP5.book  Page 1  Tuesday, March 28, 2017  5:33 PM



2 Chapter 1 Introduction

some may be applied in ways that have not even been discovered yet. As for
practices, they are sure to be a little different from what’s presented here by the
time you start working in the field, and they will continue to change throughout
your career. So you should treat the “practices” material in this book as a way to
reinforce principles, and as a way to learn design methods by example. 

One of the book’s goals is to present enough about basic principles for you
to know what’s happening when you use software tools to “turn the crank” for
you. The same basic principles can help you get to the root of problems when the
tools happen to get in your way.

Listed in the box below are several key points that you should learn
through your studies with this text. Many of these items may not make sense to
you right now, but you can come back and review them later.

Digital design is engineering, and engineering means “problem solving.”
My experience is that only 5% to 10% of digital design is “the fun stuff”—the
creative part of design, the flash of insight, the invention of a new approach.
Much of the rest is just “turning the crank.” To be sure, turning the crank is much

IMPORTANT
THEMES IN

DIGITAL DESIGN

• Good tools do not guarantee good design, but they help a lot by taking the pain
out of doing things right.

• Digital circuits have analog characteristics.

• Know when to worry and when not to worry about the analog aspects of digital
design.

• Transistors and all the digital components built with them are cheap and plentiful;
make sensible trade-offs between minimizing the size of your designs and your
engineering time.

• Always document your designs to make them understandable to yourself and to
others.

• Use consistent coding, organizational, and documentation styles in your HDL-
based designs, following your company’s guidelines.

• Understand and use standard functional building blocks.

• State-machine design is like programming; approach it that way. 

• Design for minimum cost at the system level, including your own engineering
effort as part of the cost.

• Design for testability and manufacturability.

• Use programmable logic to simplify designs, reduce cost, and accommodate last-
minute modifications.

• Avoid asynchronous design. Practice synchronous design until a better method-
ology comes along (if ever).

• Pinpoint the unavoidable asynchronous interfaces between different subsystems
and the outside world, and provide reliable synchronizers.
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1.2 Analog versus Digital 3

easier now than it was 25 or even 10 years ago, but you still can’t spend 100% or
even 50% of your time on the fun stuff.

Besides the fun stuff and turning the crank, there are many other areas in
which a successful digital designer must be competent, including the following:

• Debugging. It’s next to impossible to be a good designer without being a
good troubleshooter. Successful debugging takes planning, a systematic
approach, patience, and logic: if you can’t discover where a problem is,
find out where it is not!

• Business requirements and practices. A digital designer’s work is affected
by a lot of non-engineering factors, including documentation standards,
component availability, feature definitions, target specifications, task
scheduling, office politics, and going to lunch with vendors.

• Risk-taking. When you begin a design project, you must carefully balance
risks against potential rewards and consequences, in areas ranging from
component selection (Will it be available when I’m ready to build the first
prototype?) to schedule commitments (Will I still have a job if I’m late?).

• Communication. Eventually, you’ll hand off your successful designs to
other engineers, other departments, and customers. Without good commu-
nication skills, you’ll never complete this step successfully. Keep in mind
that communication includes not just transmitting but also receiving—
learn to be a good listener!

In the rest of this chapter, and throughout the text, I’ll continue to state
some opinions about what’s important and what is not. I think I’m entitled to do
so as a moderately successful practitioner of digital design. 

1.2 Analog versus Digital
Analog devices and systems process time-varying signals that can take on any
value across a continuous range of voltage, current, or other measurable physical
quantity. So do digital circuits and systems; the difference is that we can pretend
that they don’t! A digital signal is modeled as taking on, at any time, only one
of two discrete values, which we call 0 and 1 (or LOW and HIGH, FALSE and
TRUE, negated and asserted, Frank and Teri, or whatever).

Digital computers have been around since the 1940s, and they’ve been in
widespread commercial use since the 1960s. Yet only in the past few decades has
the “digital revolution” spread to many other aspects of life. Examples of once-
analog systems that have now “gone digital” include the following:

• Still pictures. Twenty years ago, the majority of cameras still used silver-
halide film to record images. Today, inexpensive digital cameras and
smartphones record a picture as a 1920×1080 or larger array of pixels,
where each pixel stores the intensities of its red, green, and blue color com-

analog

digital

0
1
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4 Chapter 1 Introduction

ponents as 8 or more bits each. This data, almost 50 million bits in this
example, is usually processed and compressed in JPEG format down to as
few as 5% of the original number of bits. So, digital cameras rely on both
digital storage and digital processing.

• Video recordings. “Films” are no longer stored on film. A Blu-ray disc
(BD) stores video in a highly compressed digital format called MPEG-4.
This standard compresses a small fraction of the individual video frames
into a format similar to JPEG, and encodes each other frame as the differ-
ence between it and the previous one. The capacity of a dual-layer BD is
about 400 billion bits, sufficient for about 2 hours of high-definition video.

• Audio recordings. Once made exclusively by impressing analog wave-
forms onto magnetic tape or vinyl, audio recordings are now made and
delivered digitally, using a sequence of 16- to 24-bit values corresponding
to samples of the original analog waveform, and up to 192,000 samples per
second per audio channel. The number of bits, samples, and channels
depends on the recording format; a compact disc (CD) stores two channels
of 44,100 16-bit values for up to 73 minutes of stereo audio. Like a still
picture or a video recording, an audio recording may be compressed for
delivery to or storage on a device such as a smartphone, typically using a
format called MP3.

• Automobile carburetors. Once controlled strictly by mechanical linkages
(including clever “analog” mechanical devices that sensed temperature,
pressure, etc.), automobile engines are now controlled by embedded
microprocessors. Various electronic and electromechanical sensors con-
vert engine conditions into numbers that the microprocessor can examine
to determine how to control the flow of fuel and oxygen to the engine. The
microprocessor’s output is a time-varying sequence of numbers that
operate electromechanical actuators which, in turn, control the engine.

• The telephone system. It started out over a hundred years ago with analog
microphones and receivers connected to the ends of a pair of copper wires
(or was it string?). Even today, many homes still use analog telephones,
which transmit analog signals to the phone company’s central office (CO).
However, in the majority of COs, these analog signals are converted into a
digital format before they are routed to their destinations, be they in the
same CO or across the world. For many years, private branch exchanges
(PBXs) used by businesses have carried the digital format all the way to the
desktop. Now most businesses, COs, and traditional telephony service
providers have converted to integrated systems that combine digital voice
with data traffic over a single IP (Internet Protocol) network.

• Traffic lights. Stop lights used to be controlled by electromechanical timers
that would give the green light to each direction for a predetermined
amount of time. Later, relays were used in controllers that could activate
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the lights according to the pattern of traffic detected by sensors embedded
in the pavement. Today’s controllers use microprocessors and can control
the lights in ways that maximize vehicle throughput or, in Sunnyvale,
California, frustrate drivers with all kinds of perverse behavior.

• Movie effects. Special effects used to be created exclusively with miniature
clay models, stop action, trick photography, and numerous overlays of film
on a frame-by-frame basis. Today, spaceships, cities, bugs, and monsters
are synthesized entirely using digital computers. Even actors and actresses
have been created or recreated using digital effects.

The electronics revolution has been going on for quite some time now, and
the “solid-state” revolution began with analog devices and applications like
transistors and transistor radios. So why has there now been a digital revolution?
There are in fact many reasons to favor digital circuits over analog ones,
including:

• Reproducibility of results. Given the same set of inputs (in both value and
time sequence), a properly designed digital circuit always produces exactly
the same results. The outputs of an analog circuit vary with temperature,
power-supply voltage, component aging, and other factors.

• Ease of design. Digital design, often called “logic design,” is logical. No
special math skills are needed, and the behavior of small logic circuits can
be mentally visualized without any special insights about the operation of
capacitors, transistors, or other devices that require calculus to model.

• Flexibility and functionality. Once a problem has been reduced to digital
form, it can be solved using a set of logical steps in space and time. For
example, you can design a digital circuit that scrambles your recorded
voice so it is absolutely indecipherable by anyone who does not have your
“key” (password), but it can be heard virtually undistorted by anyone who
does. Try doing that with an analog circuit.

• Programmability. You’re probably already quite familiar with digital com-
puters and the ease with which you can design, write, and debug programs
for them. Well, guess what? Most of digital design is done today by writing
“programs” too, in hardware description languages (HDLs). 

While they’re not “programming” languages in the sense of C++ or Java,
HDLs allow both structure and function of a digital circuit to be specified
or modeled with language-based constructs rather than a circuit diagram.
Moreover, besides a compiler, an HDL also comes with simulation and
synthesis programs that are used to test the hardware model’s behavior
before any real hardware is built, and then to synthesize the model into a
circuit in a particular component technology. This saves a lot of work,
because the synthesized circuit typically has a lot more detail than the
model that generated it.

hardware description 
language (HDL)

hardware model
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• Speed. Today’s digital devices are very fast. Individual transistors in the
fastest integrated circuits can switch in less than 10 picoseconds, and a
complex circuit built from these transistors can examine its inputs and pro-
duce an output in less than a nanosecond. A device incorporating such
circuits can produce a billion or more results per second.

• Economy. Digital circuits can provide a lot of functionality in a small
space. Circuits that are used repetitively can be “integrated” into a single
“chip” and mass-produced at very low cost, making possible throw-away
items like calculators, digital watches, and singing birthday cards. (You
may ask, “Is this such a good thing?” Never mind!)

• Steadily advancing technology. When you design a digital system, you
almost always know that there will be a faster, cheaper, or otherwise better
technology for it in a few years. Clever designers can accommodate these
expected advances during the initial design of a system, to forestall system
obsolescence and to add value for customers. For example, desktop com-
puters often have “expansion sockets” to accommodate faster processors
or larger memories than are available at the time of the computer’s
introduction.

So, that’s enough of a sales pitch on digital design. The rest of this chapter will
give you a bit more technical background to prepare you for the rest of the book. 

PROGRAMS,
MODELS,

MODULES,
AND CODE

As you’ll see throughout this text, Verilog HDL examples look a lot like “programs”
and are even labeled as such. But generally they are not programs in the sense that
C++ or Java programs execute a sequence of instructions to produce a result. Rather,
they are models of hardware structures that receive input signals and produce output
signals on wires, and that’s something quite different. Since we’ll show you hard-
ware basics before we get into HDL models, you should be able to understand the
difference when we get there. To help you, we will avoid calling an HDL model a
“program.”

Verilog can also be used to write procedural programs called “test benches”
that do not model hardware. A test bench exercises a hardware model, applying a
sequence of inputs to it and observing the resulting outputs, and we will actually
sometimes call it a “program” and never a “model.” 

To model a piece of hardware, Verilog typically uses statements in a construct
called a module, which may be stored in a single text file. We could call such a text
file either a module or a model, and we will. However, a complex piece of hardware
may be modeled hierarchically using multiple modules, so in that case, its model is
a collection of modules.

If none of the above terms seems quite appropriate for describing a particular
bit of Verilog, we may just call it Verilog “code,” for lack of a better short term.
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1.3 Analog Signals
Marketing hype notwithstanding, we live in an analog world, not a digital one.
Voltages, currents, and other physical quantities in real circuits take on values
that are infinitely variable, depending on properties of the real devices that com-
prise the circuits. Because real values are continuously variable, we could use a
physical quantity such as a signal voltage in a circuit to represent a real number
(e.g., 3.14159265358979 volts represents the mathematical constant pi to 14
decimal digits of precision).

However, stability and accuracy in physical quantities are difficult to
obtain in real circuits. They can be affected by manufacturing variations, tem-
perature, power-supply voltage, cosmic rays, and noise created by other circuits,
among other things. If we used an analog voltage to represent pi, we might find
that instead of being an absolute mathematical constant, pi varied over a range of
10% or more.

Also, many mathematical and logical operations can be difficult or
impossible to perform with analog quantities. While it is possible with some
cleverness to build an analog circuit whose output voltage is the square root of its
input voltage, no one has ever built a 100-input, 100-output analog circuit whose
outputs are a set of voltages identical to the set of input voltages, but sorted
arithmetically.

1.4 Digital Logic Signals
Digital logic hides the pitfalls of the analog world by using digital signals,
where the infinite set of real values for a physical quantity are mapped into two
subsets corresponding to just two possible numbers or logic values: 0 and 1.
Thus, digital logic circuits can be analyzed and designed functionally, using
switching algebra, tables, and other abstract means to describe the operation of
well-behaved 0s and 1s in a circuit.

A logic value, 0 or 1, is often called a binary digit, or bit. If an application
requires more than two discrete values, additional bits may be used, with a set of
n bits representing 2n different values.

Examples of the physical phenomena used to represent bits in some
modern (and not-so-modern) digital technologies are given in Table 1-1. With

SHORT TIMES A millisecond (ms) is 10−3 second, and a microsecond (µs) is 10−6 second. A
nanosecond (ns) is just 10−9 second, and a picosecond (ps) is 10−12 second. In a
vacuum, light travels about a foot in a nanosecond, and an inch in 85 picoseconds.
With individual transistors in the fastest integrated circuits now switching in less
than 10 picoseconds, the speed-of-light delay between these transistors across a
half-inch-square silicon chip has become a limiting factor in circuit design.

digital logic
digital signals

logic values

binary digit
bit
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most phenomena, there is an undefined region between the 0 and 1 states (e.g.,
voltage = 1.0 V, dim light, capacitor slightly charged, etc.). This undefined
region is needed so the 0 and 1 states can be unambiguously defined and reliably
detected. Noise can more easily corrupt results if the boundaries separating the 0
and 1 states are too close to each other.

When discussing electronic logic circuits like CMOS, digital designers
often use the words “LOW” and “HIGH” in place of “0” and “1” to remind them
that they are dealing with real circuits, not abstract quantities:

LOW A signal in the range of algebraically lower voltages, which is
interpreted as a logic 0.

HIGH A signal in the range of algebraically higher voltages, which is
interpreted as a logic 1.

Table 1-1 Physical states representing bits in different logic and memory technologies.

State Representing Bit

Technology 0 1

Pneumatic logic Fluid at low pressure Fluid at high pressure

Relay logic Circuit open Circuit closed

Transistor-transistor logic (TTL) 0–0.8 V 2.0–5.0 V

Complementary metal-oxide 
semiconductor (CMOS) 2-volt logic

0–0.5 V 1.5–2.0 V

Dynamic memory Capacitor discharged Capacitor charged

Nonvolatile, erasable memory Electrons trapped Electrons released

On-chip nonvolatile security key Fuse blown Fuse intact

Polymer memory Molecule in state A Molecule in state B

Fiber optics Light off Light on

Magnetic disk or tape Flux direction “north” Flux direction “south”

Compact disc (CD), digital versatile disc 
(DVD), and Blu-ray disc (BD)

No pit Pit

Writable compact disc (CD-R) Dye in crystalline state Dye in noncrystalline state

STATE
TRANSITIONS

The last four technologies in Table 1-1 don’t actually use absolute states to represent
bit values. Rather, they use transitions (or absence of transitions) between states to
represent 0s and 1s using a code such as the Manchester code described on page 82.

LOW

HIGH

DDPP5.book  Page 8  Tuesday, March 28, 2017  5:33 PM



1.5 Logic Circuits and Gates 9

Note that the assignments of 0 and 1 to LOW and HIGH are somewhat arbitrary.
Still, assigning 0 to LOW and 1 to HIGH seems natural and is called positive
logic, and that’s what we use in this book exclusively. The opposite assignment,
1 to LOW and 0 to HIGH, is not often used and is called negative logic.

Because a wide range of physical values represent the same binary value,
digital logic is highly immune to component and power-supply variations and
noise. Furthermore, buffer circuits can be used to regenerate (or amplify) “weak”
values into “strong” ones, so that digital signals can be transmitted over arbitrary
distances without loss of information. For example, using the voltage ranges in
the fourth row of Table 1-1, a buffer for 2-volt CMOS logic converts any LOW
input voltage into an output very close to 0.0 V, and any HIGH input voltage into
an output very close to 2.0 V.

1.5 Logic Circuits and Gates
A logic circuit can be represented with a minimum amount of detail simply

as a “black box” with a certain number of inputs and outputs. For example,
Figure 1-1 shows a logic circuit with three inputs and one output. However, this
representation does not describe how the circuit responds to input signals.

From the point of view of electronic circuit design, it takes a lot of informa-
tion to describe the precise electrical behavior of a circuit. However, since the
inputs of a digital logic circuit can be viewed as taking on only discrete 0 and 1
values, the circuit’s “logical” operation can be described with a table that ignores
electrical behavior and lists only discrete 0 and 1 values. 

A logic circuit whose outputs depend only on its current inputs is called a
combinational circuit. Its operation is fully described by a truth table that lists
all combinations of input values and the output value(s) produced by each one.

positive logic
negative logic

buffer

THE DIGITAL
ABSTRACTION

Digital circuits are not exactly a binary version of alphabet soup—with all due
respect to our forthcoming descriptions like Figure 1-3, digital circuits don’t have
little 0s and 1s floating around in them. As you’ll see in Chapter 14, digital circuits
deal with analog voltages and currents and are built with analog components. The
“digital abstraction” allows analog behavior to be ignored in most cases, so circuits
can be modeled as if they really did process 0s and 1s.

Figure 1-1
“Black-box” 
representation of a 
3-input, 1-output 
logic circuit.
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