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Preface

INTRODUCTION

Advanced Mechanics of Materials and Applied Elasticity, Sixth Edition, is an outgrowth 
of classroom notes prepared in connection with advanced undergraduate and first-year 
graduate courses in the mechanics of solids and elasticity. It is designed to satisfy the 
requirements of courses subsequent to an elementary treatment of the strength of materi-
als. In addition to its applicability to aeronautical, civil, and mechanical engineering and 
to engineering mechanics curricula, the text is useful to practicing engineers. Emphasis is 
given to numerical techniques (which lend themselves to computerization) in the solution 
of problems resisting analytical treatment. The attention devoted to numerical solutions is 
not intended to deny the value of classical analysis, which is given a rather full treatment. 
Instead, the coverage provided here seeks to fill what we believe to be a void in the world 
of textbooks.

We have attempted to present a balance between the theory necessary to gain insight 
into the mechanics, but which can often offer no more than crude approximations to real 
problems because of simplifications related to geometry and conditions of loading, and 
numerical solutions, which are so useful in presenting stress analysis in a more realistic 
setting. This text emphasizes those aspects of theory and application that prepare a student 
for more advanced study or for professional practice in design and analysis.

The theory of elasticity plays three important roles in the text. First, it provides exact 
solutions where the configurations of loading and boundary are relatively simple. Second, 
it provides a check on the limitations of the mechanics of materials approach. Third, it 
serves as the basis of approximate solutions employing numerical analysis.

To make the text as clear as possible, the fundamentals of the mechanics of materi-
als are addressed as necessary. The physical significance of the solutions and practical 
applications are also emphasized. In addition, we have made a special effort to illus-
trate important principles and applications with numerical examples. Consistent with 
announced national policy, problems are included in the text in which the physical quan-
tities are expressed in the International System of Units (SI). All important quantities 
are defined in both SI and U.S. Customary System (USCS) of units. A sign convention, 
consistent with vector mechanics, is employed throughout for loads, internal forces, and 
stresses. This convention conforms to that used in most classical strength of materials and 
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elasticity texts, as well as to that most often employed in the numerical analysis of com-
plex structures.

ORGANIZATION OF THE TEXT

Because of its extensive subdivision into a variety of topics and use of alternative meth-
ods of analysis, this text provides great flexibility for instructors when choosing assign-
ments to cover courses of varying length and content. Most chapters are substantially 
self-contained, so the order of presentation can be smoothly altered to meet an instructor’s 
preference. Ideally, Chapters 1 and 2, which address the analysis of basic concepts, should 
be studied first. The emphasis placed on the treatment of two-dimensional problems in 
elasticity (Chapter 3) may then differ according to the scope of the course.

This sixth edition of Advanced Mechanics of Materials and Applied Elasticity seeks to 
preserve the objectives and emphases of the previous editions. Every effort has been made 
to provide a more complete and current text through the inclusion of new material dealing 
with the fundamental principles of stress analysis and design: stress concentrations, contact 
stresses, failure criteria, fracture mechanics, compound cylinders, finite element analysis 
(FEA), energy and variational methods, buckling of stepped columns, common shell types, 
case studies in analysis and design, and MATLAB solutions. The entire text has been reex-
amined, and many improvements have been made throughout by a process of elimination 
and rearrangement. Some sections have been expanded to improve on previous expositions.

The references (identified in brackets), which are provided as an aid to those students 
who wish to pursue certain aspects of a subject in further depth, have been updated and 
listed at the end of each chapter. We have resisted the temptation to increase the mate-
rial covered except where absolutely necessary. Nevertheless, we have added a number 
of illustrative examples and problems important in engineering practice and design. Extra 
care has been taken in the presentation and solution of the sample problems. All the prob-
lem sets have been reviewed and checked to ensure both their clarity and their numerical 
accuracy. Most changes in subject-matter coverage were prompted by the suggestions of 
faculty familiar with earlier editions.

In this sixth edition, we have maintained the previous editions’ clarity of presentation, 
simplicity as the subject permits, unpretentious depth, an effort to encourage intuitive 
understanding, and a shunning of the irrelevant. In this context, as throughout, emphasis 
is placed on the use of fundamentals to help build students’ understanding and ability to 
solve the more complex problems.

SUPPLEMENTS

The book is accompanied by a comprehensive instructor’s Solutions Manual. Written and 
class tested, it features complete solutions to all problems in the text. Answers to selected 
problems are given at the end of the book. The password-protected Solutions Manual is 
available for adopters at the Pearson Instructor Resource Center, pearsonhighered.com/irc.

http://pearsonhighered.com/irc
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Optional Material is also available from the Pearson Resource Center, pearsonhigh-
ered.com/irc. This material includes PowerPoint slides of figures and tables, and solutions 
using MATLAB for a variety of sample problems of practical importance. The book, how-
ever, is independent of any software package.

Register your copy of Advanced Mechanics of Materials and Applied Elasticity, 
Sixth Edition, on the InformIT site for convenient access to updates and corrections 
as they become available. To start the registration process, go to informit.com/reg-
ister and log in or create an account. Enter the product ISBN (9780134859286) and 
click Submit. Look on the Registered Products tab for an Access Bonus Content link 
next to this product, and follow that link to access any available bonus materials. If 
you would like to be notified of exclusive offers on new editions and updates, please 
check the box to receive email from us.

http://pearsonhighered.com/irc
http://pearsonhighered.com/irc
http://informit.com/register
http://informit.com/register
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Roman Letters
A	 area
B	 width
C	 carryover factor, torsional rigidity
c	 distance from neutral axis to outer fiber
D	 distribution factor, flexural rigidity of plate
[D]	 elasticity matrix
d	 diameter, distance
E	 modulus of elasticity in tension or compression
Es	 modulus of plasticity or secant modulus
Et	 tangent modulus
e	 dilatation, distance, eccentricity
{F}	 nodal force matrix of bar and beam finite elements
F	 body force per unit volume, concentrated force
f	 coefficient of friction
{   f}	 displacement function of finite element
G	 modulus of elasticity in shear or modulus of rigidity
g	 acceleration of gravity (≈9.81 m/s2)
h	 depth of beam, height, membrane deflection, mesh width
I	 moment of inertia of area, stress invariant
J	 polar moment of inertia of area, strain invariant
K	� bulk modulus, spring constant of an elastic support, stiffness factor, thermal con-

ductivity, fatigue factor, strength coefficient, stress concentration factor
[K  ]	 stiffness matrix of whole structure
k	 constant, modulus of elastic foundation, spring constant
[k]	 stiffness matrix of finite element
L	 length, span
l, m, n	 direction cosines
M	 moment
Mxy	 twisting moment in plates
m	 moment caused by unit load
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N	 fatigue life (cycles), force
n	 factor of safety, number, strain hardening index
P	 concentrated force
p	 distributed load per unit length or area, pressure, stress resultant
Q	 first moment of area, heat flow per unit length, shearing force
{Q}	 nodal force matrix of two-dimensional finite element
R	 radius, reaction
r	 radius, radius of gyration
r, θ	 polar coordinates
S	 elastic section modulus, shear center
s	 distance along a line or a curve
T	 temperature, twisting couple or torque
t	 thickness
U	 strain energy
Uo	 strain energy per unit volume
U*	 complementary energy
u, u, w	 components of displacement
V	 shearing force, volume
u	 velocity
W	 weight, work
x, y, z	 rectangular coordinates
Z	 plastic section modulus

Greek Letters
α	 angle, coefficient of thermal expansion, form factor for shear
b	 numerical factor, angle
γ	 shear strain, weight per unit volume or specific weight, angle
δ	� deflection, finite difference operator, variational symbol, displacement
{δ}	 nodal displacement matrix of finite element
	 change of a function
ε	 normal strain
θ	 angle, angle of twist per unit length, slope
ν	 Poisson’s ratio
λ	 axial load factor, Lamé constant
Π	 potential energy
ρ	 density (mass per unit volume), radius
σ	 normal stress
τ	 shear stress
φ	 total angle of twist
F	 stress function
ω	 angular velocity
ψ	 stream function
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C H A P T E R  1

1.1  INTRODUCTION

There are two major parts to this chapter. Review of some important fundamentals of stat-
ics and mechanics of solids, the concept of stress, modes of load transmission, the general 
sign convention for stress and force resultants that will be used throughout the book, and 
analysis and design principles are provided first. This is followed by treatment of chang-
ing the components of the state of stress given in one set of coordinate axes to any other 
set of rotated axes, as well as variation of stress within and on the boundaries of a load-
carrying member. Plane stress and its transformation are of basic importance, since these 
conditions are most common in engineering practice. This chapter is therefore also a brief 
guide and introduction to the remainder of the text.

1.1.1  Mechanics of Materials and Theory of Elasticity

The basic structure of matter is characterized by nonuniformity and discontinuity attribut-
able to its various subdivisions: molecules, atoms, and subatomic particles. Our concern 
in this text is not with the particulate structure, however. Instead, it will be assumed that 
the matter with which we are concerned is homogeneous and continuously distributed over 
its volume. There is the clear implication in such an approach that the smallest element 
cut from the body possesses the same properties as the body. Random fluctuations in the 
properties of the material are, therefore, of no consequence. This approach is that of con-
tinuum mechanics, in which solid elastic materials are treated as though they are continu-
ous media rather than composed of discrete molecules. Of the states of matter, we are here 
concerned only with the solid, with its ability to maintain its shape without the need of a 
container and to resist continuous shear, tension, and compression.

In contrast with rigid-body statics and dynamics, which treat the external behavior of 
bodies (that is, the equilibrium and motion of bodies without regard to small deformations 
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associated with the application of load), the mechanics of solids is concerned with the 
relationships of external effect (forces and moments) to internal stresses and strains. Two 
notable approaches used in solid mechanics are the mechanics of materials or elementary 
theory (also called technical theory) and the theory of elasticity. The mechanics of materials 
focuses mainly on the more or less approximate solutions of practical problems. The theory 
of elasticity concerns itself largely with more mathematical analysis to determine the “exact” 
stress and strain distributions in a loaded body. The difference between these approaches lies 
primarily in the nature of the simplifying assumptions used, described in Section 3.1.

External forces acting on a body may be classified as surface forces and body forces. 
A surface force is of the concentrated type when it acts at a point; a surface force may 
also be distributed uniformly or nonuniformly over a finite area. Body forces are associ-
ated with the mass rather than the surfaces of a body, and are distributed throughout the 
volume of a body. Gravitational, magnetic, and inertia forces are all body forces. They 
are specified in terms of force per unit volume. All forces acting on a body, including the 
reactive forces caused by supports and body forces, are considered to be external forces. 
Internal forces are the forces that hold together the particles forming the body. Unless oth-
erwise stated, we assume in this text that body forces can be neglected and that forces are 
applied steadily and slowly. The latter is referred to as static loading.

In the International System of Units (SI), force is measured in newtons (N). Because 
the newton is a small quantity, the kilonewton (kN) is often used in practice. In the U.S. 
Customary System (USCS), force is expressed in pounds (lb) or kilopounds (kips). We 
define all important quantities in both systems of units. However, in numerical examples 
and problems, SI units are used throughout the text consistent with international conven-
tion. (Table D.2 compares the two systems.)

1.1.2  Historical Development

The study of the behavior of members in tension, compression, and bending began with 
Leonardo da Vinci (1452–1519) and Galileo Galilei (1564–1642). For a proper under-
standing, however, it was necessary to establish accurate experimental description of a 
material’s properties. Robert Hooke (1615–1703) was the first to point out that a body is 
deformed subject to the action of a force. Sir Isaac Newton (1642–1727) developed the 
concepts of Newtonian mechanics that became key elements of the strength of materials.

Leonard Euler (1707–1783) presented the mathematical theory of columns in 1744. 
The renowned mathematician Joseph-Louis Lagrange (1736–1813) received credit for 
developing a partial differential equation to describe plate vibrations. Thomas Young 
(1773–1829) established a coefficient of elasticity, Young’s modulus. The advent of rail-
roads in the late 1800s provided the impetus for much of the basic work in this area. 
Many famous scientists and engineers, including Coulomb, Poisson, Navier, St. Venant, 
Kirchhoff, and Cauchy, were responsible for advances in mechanics of materials during 
the eighteenth and nineteenth centuries. The British physicist William Thomas Kelvin 
(1824–1907), better known by his knighted name, Sir Lord Kelvin, first demonstrated that 
torsional moments acting at the edges of plates could be decomposed into shearing forces. 
The prominent English mathematician Augustus Edward Hough Love (1863–1940) intro-
duced simple analysis of shells, known as Love’s approximate theory.
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Over the years, most basic problems of solid mechanics had been solved. Stephan 
P. Timoshenko (1878–1972) made numerous original contributions to the field of applied 
mechanics and wrote pioneering textbooks on the mechanics of materials, theory of elas-
ticity, and theory of elastic stability. The theoretical base for modern strength of materials 
had been developed by the end of the nineteenth century. Since that time, problems asso-
ciated with the design of aircraft, space vehicles, and nuclear reactors have led to many 
studies of the more advanced phases of the subject. Consequently, the mechanics of mate-
rials is being expanded into the theories of elasticity and plasticity.

In 1956, Turner, Clough, Martin, and Topp introduced the finite element method, 
which permits the numerical solution of complex problems in solid mechanics in an eco-
nomical way. Many contributions in this area are owed to Argyris and Zienkiewicz. The 
recent trend in the development is characterized by heavy reliance on high-speed comput-
ers and by the introduction of more rigorous theories. Numerical methods presented in 
Chapter 7 and applied in the subsequent chapters have clear application to computation 
by means of electronic digital computers. Research in the foregoing areas is ongoing, not 
only to meet demands for treating complex problems, but also to justify further use and 
limitations on which the theory of solid mechanics is based.

Although a widespread body of knowledge exists at present, mechanics of materi-
als and elasticity remain fascinating subjects, as their areas of application continue to 
expand.* The literature dealing with various aspects of solid mechanics is voluminous. 
For those seeking more thorough treatment, selected references are identified in brackets 
and compiled at the end of each chapter.

1.2  SCOPE OF THE BOOK

As stated in the preface, this book is intended for advanced undergraduate and gradu-
ate engineering students as well as engineering professionals. To make the text as clear 
as possible, attention is given to the fundamentals of solid mechanics and chapter objec-
tives. A special effort has been made to illustrate important principles and applications 
with numerical examples. Emphasis is placed on a thorough presentation of both classical 
topics in advanced mechanics of materials and applied elasticity and selected advanced 
topics. The physical behavior of members is first explained, and this behavior is then mod-
eled to develop the theory.

The usual objective of the mechanics of materials and theory of elasticity is the exam-
ination of the load-carrying capacity of a body from three standpoints: strength, stiffness, 
and stability. Recall that these quantities relate, respectively, to the ability of a member to 
resist permanent deformation or fracture, to resist deflection, and to retain its equilibrium 
configuration. For instance, when loading produces an abrupt shape change of a member, 
instability occurs; similarly, an inelastic deformation or an excessive magnitude of deflec-
tion in a member will cause malfunction in normal service. Based on the fundamental 
principles (Section 1.3), these behaviors are discussed in later chapters for various types 

*Historical reviews of the mechanics of materials and the theory of elasticity are given in Refs. 1.1 
through 1.3.
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of structural members. Failure by yielding and fracture of the materials under combined 
loading is taken up in detail in Chapter 4.

Our main concern is the analysis of stress and deformation within a loaded body, 
which is accomplished by application of one of the methods described in the next section. 
For this purpose, the analysis of loads is essential. A structure or machine cannot meet its 
expectations unless its design is based on realistic operating loads. The principal topics 
under the heading of mechanics of solids may be summarized as follows:

1.	 Analysis of the stresses and deformations within a body subject to a prescribed system 
of forces. This is accomplished by solving the governing equations that describe the 
stress and strain fields (theoretical stress analysis). It is often advantageous, where the 
shape of the structure or conditions of loading preclude a theoretical solution or where 
verification is required, to apply the laboratory techniques of experimental stress 
analysis.

2.	 Determination by theoretical analysis or by experiment of the limiting values of load 
that a structural element can sustain without suffering damage, failure, or compromise 
of function.

3.	 Determination of the body shape and selection of the materials that are most effi-
cient for resisting a prescribed system of forces under specified conditions of opera-
tion, such as temperature, humidity, vibration, and ambient pressure. This is the design 
function.

The design function, item 3, clearly relies on the theoretical analyses results obtained via 
items 1 and 2; thus, this text focuses on those topics. In particular, emphasis is placed 
on the development of the equations and methods by which detailed analysis can be 
accomplished.

The ever-increasing industrial demand for more sophisticated structures and machines 
calls for a good grasp of the concepts of stress and strain and the behavior of materials—and 
a considerable degree of ingenuity. This text, at the very least, provides the student with the 
ideas and information necessary for an understanding of the advanced mechanics of solids 
and encourages use of the creative process based on that understanding. Complete, carefully 
drawn free-body diagrams are used to visualize the processes involved, though the subject 
matter can be learned best by solving problems of practical importance. A thorough grasp of 
fundamentals will prove of great value in attacking new and unfamiliar problems.

1.3  ANALYSIS AND DESIGN

Throughout this text, a fundamental procedure for analysis in solving mechanics of sol-
ids problems is used repeatedly. The complete analysis of load-carrying structural mem-
bers by the method of equilibrium requires consideration of three conditions related to 
certain laws of forces, laws of material deformation, and geometric compatibility. These 
essential relationships, called the basic principles of analysis, are as follows:

1.	 Equilibrium conditions. The equations of equilibrium of forces must be satisfied 
throughout the member.
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2.	 Material behavior. The stress–strain or force-deformation relations (for example, 
Hooke’s law) must apply to the behavior of the material of which the member is 
constructed.

3.	 Geometry of deformation. The compatibility conditions of deformations must be sat-
isfied: that is, each deformed portion of the member must fit together with adjacent 
portions. (Matter of compatibility is not always broached in mechanics of materials 
analysis.)

The stress and deformation obtained through the use of these three principles must 
conform to the conditions of loading imposed at the boundaries of a member. This cir-
cumstance is known as satisfying the boundary conditions. Applications of the preced-
ing procedure are illustrated in the problems presented in this text. Note, however, that 
it is not always necessary to execute an analysis in the precise sequence of steps listed 
previously.

As an alternative to the equilibrium methods, the analysis of stress and deformation 
can be accomplished by employing energy methods (Chapter 10), which are based on 
the concept of strain energy. Both the equilibrium and the energy approaches can provide 
solutions of acceptable accuracy where configurations of loading and member shape are 
regular, and they can be used as the basis of numerical methods in the solution of more 
realistic problems.

Engineering design is the process of applying science and engineering techniques to 
define a structure or system in detail to allow its realization. The objective of a mechani-
cal design procedure includes finding the proper materials, dimensions, and shapes of 
the members of a structure or machine so that they will support the prescribed loads and 
perform without failure. Machine design entails creating new or improved machines to 
accomplish specific purposes. Usually, structural design deals with any engineering disci-
pline that requires a structural member or system.

Design is the essence, art, and intent of engineering. A good design satisfies perfor-
mance, cost, and safety requirements. An optimum design is the best solution to a design 
problem within given restrictions. Efficiency of the optimization may be gaged by such 
criteria as minimum weight or volume, optimum cost, and any other standard deemed 
appropriate. When faced with a design problem characterized by many choices, a designer 
may often make decisions on the basis of past experience, so as to reduce the problem to 
a single variable. A solution to determine the optimum result becomes straightforward in 
such a situation.

A plan for satisfying a need usually includes preparation of individual preliminary 
design. Each preliminary design involves a thorough consideration of the loads and 
actions that the structure or machine must support. For each situation, an analysis is 
necessary. Design decisions—that is, choosing reasonable values of the safety factors 
and material properties—are significant in the preliminary design process. We note that 
the design of numerous structures, such as pressure vessels, space missiles, aircrafts, 
dome roofs, and bridge decks, is based on the theories of plates and shells. For exam-
ple, a water storage tank can be satisfactorily designed using the shell-membrane theory 
(Section 13.12). By comparison, the design of a missile casing demands a more precise 
shell-bending theory so as to minimize weight and materials. Similarly, the design of 
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a nozzle-to-cylinder junction in a nuclear reactor may necessitate an elaborate finite 
element analysis.

1.3.1  Role of Analysis in Design

This text provides an elementary treatment of the concept of “design to meet strength 
requirements” as those requirements relate to individual machine or structural compo-
nents. That is, the geometric configuration and material of a component are preselected 
and the applied loads are specified. Then, the basic formulas for stress are employed to 
select members of adequate size in each case. The role of analysis in design may be 
observed best in examining the phases of a design process. The following is rational pro-
cedure in the design of a load-carrying member:

1.	 Evaluate the most likely modes of failure of the member. Failure criteria that predict 
the various modes of failure under anticipated conditions of service are discussed in 
Chapter 4.

2.	 Determine the expressions relating applied loading to such effects as stress, strain, and 
deformation. Often, the member under consideration and conditions of loading are so 
significant or so amenable to solution as to have been the subject of prior analysis. For 
these situations, textbooks, handbooks, journal articles, and technical papers are good 
sources of information. If the situation is unique, however, a mathematical derivation 
specific to the case at hand is required.

3.	 Determine the maximum usable value of stress, strain, or energy. This value is obtained 
either by reference to compilations of material properties or by experimental means 
such as simple tension test and is used in connection with the relationship derived in 
step 2.

4.	 Select a design factor of safety. This is to account for uncertainties in a number of 
aspects of the design, including those related to the actual service loads, material prop-
erties, or environmental factors. An important area of uncertainty is connected with 
the assumptions made in the analysis of stress and deformation. Also, we are not likely 
to have a secure knowledge of the stresses that may be introduced during machining, 
assembly, and shipment of the element.

The design factor of safety also reflects the consequences of failure—for example, 
the possibility that failure will result in loss of human life or injury or in costly repairs 
or danger to other components of the overall system. For these reasons, the design factor 
of safety is also sometimes called the factor of ignorance. The uncertainties encountered 
during the design phase may be of such magnitude as to lead to a design carrying extreme 
weight, volume, or cost penalties. It may then be advantageous to perform thorough tests 
or more exacting analysis rather to rely on overly large design factors of safety.

1.3.2  Selection of Factor of Safety

The true factor of safety, usually referred to simply as the factor of safety, can be deter-
mined only after the member is constructed and tested. This factor is the ratio of the 
maximum load that the member can sustain under severe testing without failure to the 
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maximum load that is actually carried under normal service conditions (the working 
load). When a linear relationship exists between the load and the stress produced by the 
load, the factor of safety n may be expressed as

	 = maximum usable stress

allowable stress
n 	 (1.1)

Maximum usable stress represents either the yield stress or the ultimate stress. The allow-
able stress is the working stress. The factor of safety must be greater than 1.0 if failure is 
to be avoided. Modern engineering design accounts for all possible environmental, load-
ing, stress, and material conditions, leaving relatively few items of uncertainty to be cov-
ered by a factor of safety. Values for the factor of safety, selected by the designer on the 
basis of experience and judgment, range from approximately 1.25 to 4.

In the nuclear reactor industries, the safety factor is of prime significance in the face 
of many unknown effects; hence the factor of safety may be as high as 5. The use of a 
factor of safety in design is a reliable, time-proven approach. If this factor is properly 
selected, sound and safe designs are obtained by using it. For most applications, appropri-
ate factors of safety are found in various construction and manufacturing codes. A con-
cept closely related to safety factor is reliability defined as the statistical measure of the 
probability that a member will not fail in service [Ref. 1.4].

The procedure outlined in Section 1.3.1 is not always conducted in as formal a fash-
ion as may have been implied in that discussion. In some design phases, one or more steps 
may be regarded as unnecessary or obvious on the basis of previous experience. Suffice it 
to say that complete design solutions are not unique, involve a consideration of many fac-
tors, and often require a trial-and-error process. Stress is just one consideration in design. 
Other phases of the design of components include the prediction of the deformation of 
a given component under given loading and the consideration of buckling. The methods 
of determining deformation are discussed in later chapters of this text. Note that analysis 
and design are closely related, and the examples and problems that appear throughout this 
book illustrate that connection.

We conclude this section with an appeal to the reader to exercise a degree of skepti-
cism when applying formulas for which the limitations of use or the areas of applicability 
are uncertain. The relatively simple form of many formulas usually results from rather 
severe restrictions in the formula’s derivation. These limitations may include simplified 
boundary conditions and shapes, limitations on stress and strain, and the neglect of certain 
complicating factors. Designers and stress analysts must be aware of such restrictions lest 
their work be of no value or, even worse, lead to dangerous inadequacies.

In this chapter, we focus on the state of stress at a point and the variation of stress 
throughout an elastic body. The latter is dealt with in Sections 1.8 and 1.16 and the former 
in the balance of the chapter.

1.3.3  Case Studies

A general case study in analysis may move step by step through the problem formula-
tion and solution stages, as outlined in Appendix A. The basic geometry and loading on 
a member must be selected before any analysis can be done. For example, the stress that 
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would occur in a bar under a load would depend on whether the loading gives rise to 
tension, transverse shear, direct shear, torsion, bending, or contact stresses. In this case, 
uniform stress patterns may be more efficient at carrying the load than others. Therefore, 
by carefully studying the types of loads and stress patterns that can arise in structures, 
some insight can be gained into improved shapes and orientations of components. A few 
case studies introduced in this text involve situations encountered during the analysis and 
design of structural members.

1.4  CONDITIONS OF EQUILIBRIUM

A structure is a unit consisting of interconnected members supported in such a way 
that it is capable of carrying loads in static equilibrium. Structures are of four general 
types: frames, trusses, machines, and thin-walled (plate and shell) structures. Frames and 
machines are structures containing multiforce members. The former support loads and 
are usually stationary, fully restrained structures. The latter transmit and modify forces 
(or power) and always contain moving parts. The truss provides both a practical and an 
economical solution, particularly in the design of bridges and buildings. When the truss 
is loaded at its joints, the only force in each member is an axial force, either tensile or 
compressive.

The analysis and design of structural and machine components require a knowledge 
of the distribution of forces within such members. Fundamental concepts and conditions 
of static equilibrium provide the necessary background for the determination of inter-
nal as well as external forces. In Section 1.6, we shall see that components of internal-
forces resultants have special meaning in terms of the type of deformations they cause, 
as applied, for example, to slender members. The surface forces that develop at support 
points of a structure, which are called reactions, equilibrate the effects of the applied 
loads on the structures.

The equilibrium of forces is the state in which the forces applied on a body are in 
balance. Newton’s first law states that if the resultant force acting on a particle (the sim-
plest body) is zero, the particle will remain at rest or will move with constant velocity. 
Statics is concerned essentially with the case where the particle or body remains at rest. A 
complete free-body diagram is essential in the solution of equilibrium.

Let us consider the equilibrium of a body in space. In this three-dimensional case, the 
conditions of equilibrium require the satisfaction of the following equations of statics:

	
F F F

M M M
x y z

x y z

Σ = Σ = Σ =

Σ = Σ = Σ =

0 0 0

0 0 0
	 (1.2)

These equations state that the sum of all forces acting on a body in any direction must be 
zero; the sum of all moments about any axis must be zero.

In a planar problem, where all forces act in a single (xy) plane, there are only three 
independent equations of statics:

	 F F Mx y AΣ = Σ = Σ =0 0 0 	 (1.3)



1.5    Definition and Components of Stress� 9

That is, the sum of all forces in any (x, y) directions must be zero, and the resultant 
moment about axis z or any point A in the plane must be zero. By replacing a force sum-
mation with an equivalent moment summation in Eqs. (1.3), the following alternative sets 
of conditions are obtained:

	 F M Mx A BΣ = Σ = Σ =0 0 0 	 (1.4a)

provided that the line connecting the points A and B is not perpendicular to the x axis, or

	 M M MA B CΣ = Σ = Σ =0 0 0 	 (1.4b)

if points A, B, and C are not collinear. Clearly, the judicious selection of points for taking 
moments can often simplify the algebraic computations.

A structure is statically determinate when all forces on its members can be found 
by using only the conditions of equilibrium. If there are more unknowns than available 
equations of statics, the problem is called statically indeterminate. The degree of static 
indeterminacy is equal to the difference between the number of unknown forces and the 
number of relevant equilibrium conditions. Any reaction that is in excess of those that can 
be obtained by statics alone is termed redundant. Thus, the number of redundants is the 
same as the degree of indeterminacy.

1.5  DEFINITION AND COMPONENTS OF STRESS

Stress and strain are most important concepts for a comprehension of the mechanics of 
solids. They permit the mechanical behavior of load-carrying components to be described 
in terms fundamental to the engineer. Both the analysis and the design of a given machine 
or structural element involve the determination of stress and material stress–strain rela-
tionships. The latter is taken up in Chapter 2.

Consider a body in equilibrium subject to a system of external forces, as shown in 
Fig. 1.1a. Under the action of these forces, internal forces are developed within the body. 
To examine these forces at some interior point Q, we use an imaginary plane to cut the 
body at a section a–a through Q, dividing the body into two parts. As the forces act-
ing on the entire body are in equilibrium, the forces acting on one part alone must be in 

a

Q

a

External
forces

Internal
forces

(a)

y

Q

∆A ∆F
∆Fy

∆Fz

∆Fx

∆A

x

z

Q

(c)(b)

Figure 1.1.  �Method of sections: (a) sectioning of a loaded body; (b) free body with external 
and internal forces; (c) enlarged area ΔA with components of the force ΔF.




