

Advanced Mechanics of Materials and Applied Elasticity

SIXTH EDITION

Advanced Mechanics of Materials and Applied Elasticity

Sixth Edition

This page intentionally left blank

Advanced Mechanics of Materials and Applied Elasticity

Sixth Edition

ANSEL C. UGURAL

SAUL K. FENSTER

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2019932748

Copyright © 2020 Pearson Education, Inc.

Cover illustration: Yulia Grigoryeva/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-485928-6 ISBN-10: 0-13-485928-6

Contents

Preface Acknowledgments		xvii xx	
About the Authors			xxi
List o	of Syml	pols	xxii
	v		
Chap	ter 1	Analysis of Stress	1
1.1	Introd	uction	1
	1.1.1	Mechanics of Materials and Theory of Elasticity	1
	1.1.2	Historical Development	2
1.2	Scope	of the Book	3
1.3	Analy	sis and Design	4
	1.3.1	Role of Analysis in Design	6
	1.3.2	Selection of Factor of Safety	6
	1.3.3	Case Studies	7
1.4	Condi	tions of Equilibrium	8
1.5	Defin	ition and Components of Stress	9
	1.5.1	Sign Convention	11
	1.5.2	Equality of Shearing Stresses	12
	1.5.3	Some Special Cases of Stress	12
1.6	Intern	al Force Resultant and Stress Relations	13
	1.6.1	Basic Formulas for Stress	15
	1.6.2	Combined Stresses	17
1.7	Stress	es on Inclined Sections	17
	1.7.1	Axially Loaded Members	18
1.8	Variat	ion of Stress within a Body	20
	1.8.1	Equations of Equilibrium	20
1.9	Plane	Stress Transformation	23
	1.9.1	Stress Tensor	25
	1.9.2	Polar Representations of State of Plane Stress	25
	1.9.3	Cartesian Representation of State of Plane Stress	25

1.10	Principal Stresses and Maximum In-Plane Shear Stress	26
1.11	Mohr's Circle for Two-Dimensional Stress	28
1.12	Three-Dimensional Stress Transformation	35
1.13	Principal Stresses in Three Dimensions	38
	1.13.1 Invariants for Three-Dimensional Stress	40
1.14	Normal and Shear Stresses on an Oblique Plane	42
	1.14.1 Octahedral Stresses	44
1.15	Mohr's Circles in Three Dimensions	45
	1.15.1 Absolute Maximum Shear Stress	46
	1.15.2 Equations of Three Mohr's Circles for Stress	47
1.16	Boundary Conditions in Terms of Surface Forces	49
1.17	Indicial Notation	50
	References	51
	Problems	51
Chap	oter 2 Strain and Material Properties	68
2.1	Introduction	68
2.2	Deformation	69
	2.2.1 Superposition	69
2.3	Strain Defined	70
	2.3.1 Plane Strain	70
	2.3.2 Three-Dimensional Strain	72
	2.3.3 Eulerian and Lagrangian Coordinates	73
	2.3.4 Large Strains	74
2.4	Equations of Compatibility	75
2.5	State of Strain at a Point	76
	2.5.1 Transformation of Two-Dimensional Strain	76
	2.5.2 Transformation of Three-Dimensional Strain	78
	2.5.3 Invariants in Three-Dimensional Strain	79
	2.5.4 Mohr's Circle for Plane Strain	80
2.6	Engineering Materials	83
	2.6.1 General Properties of Some Common Materials	84
2.7	Stress-Strain Diagrams	86
	2.7.1 Ductile Materials in Tension	86
	2.7.2 Geometry Change of Specimen	87
	2.7.3 True Stress and True Strain	88
	2.7.4 Brittle Materials in Tension	89
	2.7.5 Materials in Compression	89
	2.7.6 Materials in Shear	90
	2.7.7 Short-Time Effects of Temperature on Stress-Strain Properties	90
2.8	Elastic versus Plastic Behavior	91
2.9	Hooke's Law and Poisson's Ratio	92
	2.9.1 Volume Change	93
	2.9.2 Deflection of Axially Loaded Members	93

2.10	Generalized Hooke's Law	96
2.11	Orthotropic Materials	101
	2.11.1 Generalized Hook's Law for Orthotropic Material	102
2.12	Measurement of Strain: Strain Gage	103
	2.12.1 Strain Rosette of Three Gages	104
	2.12.2 Rectangular and Delta Strain Rosettes	106
2.13	Strain Energy	107
	2.13.1 Strain Energy Density for Normal and Shear Stresses	108
	2.13.2 Strain Energy Density for Three-Dimensional Stresses	110
2.14	Strain Energy in Common Structural Members	111
	2.14.1 Strain Energy for Axially Loaded Bars	111
	2.14.2 Strain Energy of Circular Bars in Torsion	112
	2.14.3 Strain Energy for Beams in Bending	113
2.15	Components of Strain Energy	113
2.16	Saint-Venant's Principle	115
	2.16.1 Confirmation of Saint-Venant's Rule	116
	References	117
	Problems	118
Chap	ter 3 Problems in Elasticity	133
3.1	Introduction	133
3.2	Fundamental Principles of Analysis	134
	3.2.1 Three-Dimensional Problems	134
	3.2.2 Two-Dimensional Problems	134
Part	A: Formulation and Methods of Solution	135
3.3	Plane Strain Problems	135
3.4	Plane Stress Problems	138
	3.4.1 Stress–Strain Relations for Orthotropic Materials	139
3.5	Comparison of Two-Dimensional Isotropic Problems	140
3.6	Airy's Stress Function	141
	3.6.1 Generalized Plane Strain Problems	142
	3.6.2 Antiplane Shear Deformations	142
3.7	Solution of Elasticity Problems	143
	3.7.1 Polynomial Solutions	144
3.8	Thermal Stresses	149
	3.8.1 Equations of Thermoelasticity	149
3.9	Basic Relations in Polar Coordinates	152
	3.9.1 Equations of Equilibrium	153
	3.9.2 Stress Function	153
	3.9.3 Strain-Displacement Relations	154
	3.9.4 Hooke's Law	155
	3.9.5 Transformation Equations	155
	3.9.6 Compatibility Equation	156

Part	B: Stress Concentrations	157
3.10	Stresses Due to Concentrated Loads	157
	3.10.1 Compression of a Wedge (Fig. 3.10a)	157
	3.10.2 Bending of a Wedge (Fig. 3.10b)	159
	3.10.3 Concentrated Load on a Straight Boundary (Fig. 3.11a)	160
3.11	Stress Distribution Near a Concentrated Load Acting on a Beam	161
	3.11.1 Accuracy of Results	163
3.12	Stress Concentration Factors	163
	3.12.1 Circular Hole in a Large Plate in Simple Tension	165
	3.12.2 Circular Hole in a Large Plate in Biaxial Tension	167
	3.12.3 Elliptic Hole in a Large Plate in Tension	167
	3.12.4 Graphs for Stress Concentration Factors	168
Part	C: Contact Mechanics	169
3.13	Contact Stresses and Deflections	169
	3.13.1 Hertz Theory	170
	3.13.2 Johnson–Kendall–Roberts Theory	170
3.14	Spherical and Cylindrical Contacts	171
	3.14.1 Two Spheres in Contact	171
	3.14.2 Two Parallel Cylinders in Contact	173
3.15	Contact Stress Distribution	174
	3.15.1 Two Spheres in Contact (Figure 3.18a)	174
	3.15.2 Two Parallel Cylinders in Contact (Figure 3.20a)	174
3.16	General Contact	178
	References	181
	Problems	182
Chap	ter 4 Failure Criteria	192
4.1	Introduction	192
	4.1.1 Failure	192
Part	A: Static Loading	193
4.2	Failure by Yielding	193
	4.2.1 Creep: Time-Dependent Deformation	194
4.3	Failure by Fracture	195
	4.3.1 Types of Fracture in Tension	196
4.4	Yield and Fracture Criteria	197
4.5	Maximum Shearing Stress Theory	198
4.6	Maximum Distortion Energy Theory	199
	4.6.1 Yield Surfaces for Triaxial Stress	200
4.7	Octahedral Shearing Stress Theory	200
4.8	Comparison of the Yielding Theories	204
4.9	Maximum Principal Stress Theory	205
4.10	Mohr's Theory	206
4.11	Coulomb–Mohr Theory	207
4.12	Introduction to Fracture Mechanics	210
	4.12.1 Stress-Intensity Factors	211

4.13	Fracture Toughness	213
Part	B: Repeated and Dynamic Loadings	216
4.14	Fatigue: Progressive Fracture	216
	4.14.1 Fatigue Tests	216
	4.14.2 Estimating the Endurance Limit and Fatigue Strength	217
4.15	Failure Criteria for Metal Fatigue	217
	4.15.1 Uniaxial State of Stress	218
	4.15.2 Comparison of Fatigue Failure Criteria	219
	4.15.3 Design for Uniaxial Stress	219
	4.15.4 Combined State of Stress	221
4.16	Fatigue Life	223
4.17	Impact Loads	225
	4.17.1 Strain Rate	226
	4.17.2 Basic Assumptions of Impact Analysis	227
4.18	Longitudinal and Bending Impact	227
	4.18.1 Freely Falling Weight	227
	4.18.2 Horizontally Moving Weight	228
4.19	Ductile–Brittle Transition	230
	References	232
	Problems	233
Chap	oter 5 Bending of Beams	242
5.1	Introduction	242
Part	A: Exact Solutions	243
5.2	Pure Bending of Beams of Symmetrical Cross Section	243
	5.2.1 Kinematic Relationships	244
	5.2.2 Timoshenko Beam Theory	246
5.3	Pure Bending of Beams of Asymmetrical Cross Section	246
	5.3.1 Stress Distribution	248
	5.3.2 Transformation of Inertia Moments	248
5.4	Bending of a Cantilever of Narrow Section	251
	5.4.1 Comparison of the Results with the Elementary Theory Results	253
5.5	Bending of a Simply Supported Narrow Beam	254
	5.5.1 Use of Stress Functions	255
	5.5.2 Comparison of the Results with the Elementary Theory Results	256
Part	B: Approximate Solutions	256

Part B: Approximate Solutions

5.6	Elementary Theory of Bending	256
	5.6.1 Assumptions of Elementary Theory	257
	5.6.2 Method of Integration	258
5.7	Normal and Shear Stresses	260
	5.7.1 Rectangular Cross Section	262
	5.7.2 Various Cross Sections	262
	5.7.3 Beam of Constant Strength	267
5.8	Effect of Transverse Normal Stress	268

5.9	Composite Beams	270
	5.9.1 Transformed Section Method	270
	5.9.2 Equation of Neutral Axis	271
	5.9.3 Stresses in the Transformed Beam	272
	5.9.4 Composite Beams of Multi Materials	272
5.10	Shear Center	276
	5.10.1 Thin-Walled Open Cross Sections	277
	5.10.2 Arbitrary Solid Cross Sections	281
5.11	Statically Indeterminate Systems	281
	5.11.1 The Method of Superposition	282
5.12	Energy Method for Deflections	284
	5.12.1 Form Factor for Shear	285
Part	C: Curved Beams	286
5.13	Elasticity Theory	286
	5.13.1 Equations of Equilibrium and Compatibility	286
	5.13.2 Boundary Conditions	287
	5.13.3 Stress Distribution	288
	5.13.4 Deflections	289
5.14	Curved Beam Formula	289
	5.14.1 Basic Assumptions	289
	5.14.2 Location of the Neutral Axis	290
	5.14.3 Tangential Stress	291
	5.14.4 Winkler's Formula	293
5.15	Comparison of the Results of Various Theories	293
	5.15.1 Correction of σ_{θ} for Beams with Thin-Walled Cross Sections	294
5.16	Combined Tangential and Normal Stresses	296
	References	300
	Problems	300
Chap	ter 6 Torsion of Prismatic Bars	315
6.1	Introduction	315
6.2	Elementary Theory of Torsion of Circular Bars	316
	6.2.1 Shearing Stress	317
	6.2.2 Angle of Twist	317
	6.2.3 Axial and Transverse Shear Stresses	320
6.3	Stresses on Inclined Planes	321
	6.3.1 Stress Transformation	321
	6.3.2 Transmission of Power by Shafts	323
6.4	General Solution of the Torsion Problem	324
	6.4.1 Geometry of Deformation	324
	6.4.2 Equations of Equilibrium	325
	6.4.3 Equations of Compatibility	325
6.5	Prandtl's Stress Function	326
	6.5.1 Boundary Conditions	326

	6.5.2 Force and Moments over the Ends	327
	6.5.3 Circular Cross Section	331
6.6	Prandtl's Membrane Analogy	333
	6.6.1 Equation of Equilibrium	333
	6.6.2 Shearing Stress and Angle of Twist	335
6.7	Torsion of Narrow Rectangular Cross Section	338
	6.7.1 Thin-Walled Open Cross Sections	339
6.8	Torsion of Multiply Connected Thin-Walled Sections	340
	6.8.1 Shearing Stress	340
	6.8.2 Angle of Twist	341
6.9	Fluid Flow Analogy and Stress Concentration	344
6.10	Torsion of Restrained Thin-Walled Members of Open Cross Section	346
	6.10.1 Torsional and Lateral Shears	347
	6.10.2 Boundary Conditions	348
	6.10.3 Long Beams Under Torsion	348
	6.10.4 Angle of Twist	348
6.11	Torsion Bar Springs	350
6.12	Curved Circular Bars	351
	6.12.1 Helical Springs	352
	References	354
	Problems	355
Chap	ter 7 Numerical Methods	364
7.1	Introduction	364
Part	A: Finite Difference Analysis	365
7.2	Finite Differences	365
	7.2.1 Central Differences	366
7.3	Finite Difference Equations	368
7.4	Curved Boundaries	370
7.5	Boundary Conditions	373
Part	B: Finite Element Analysis	377
7.6	Fundamentals	377
7.7	The Bar Element	379
	7.7.1 Equilibrium Method	379
	7.7.2 Energy Method	379
7.8	Arbitrarily Oriented Bar Element	380
	7.8.1 Coordinate Transformation	380
	7.8.2 Force Transformation	381
	7.8.3 Displacement Transformation	383
	7.8.4 Governing Equations	383
7.9	Axial Force Equation	384
F 10		
7.10	Force-Displacement Relations for a Truss	386
7.10	Force-Displacement Relations for a Truss 7.10.1 The Assembly Process	386 386

7.12	Properties of Two-Dimensional Elements	399
	7.12.1 Displacement Matrix	399
	7.12.2 Strain, Stress, and Elasticity Matrices	401
7.13	General Formulation of the Finite Element Method	402
	7.13.1 Outline of General Finite Element Analysis	403
7.14	Triangular Finite Element	407
	7.14.1 Element Nodal Forces	410
7.15	Case Studies in Plane Stress	414
7.16	Computational Tools	423
	References	423
	Problems	424
Chap	ter 8 Thick-Walled Cylinders and Rotating Disks	434
8.1	Introduction	434
	8.1.1 Basic Relations	434
8.2	Thick-Walled Cylinders Under Pressure	435
	8.2.1 Special Cases	438
	8.2.2 Closed-Ended Cylinder	440
8.3	Maximum Tangential Stress	441
8.4	Application of Failure Theories	442
8.5	Compound Cylinders: Press or Shrink Fits	443
8.6	Rotating Disks of Constant Thickness	446
	8.6.1 Annular Disk	447
	8.6.2 Solid Disk	448
8.7	Disk Flywheels	449
	8.7.1 Design Factors	450
	8.7.2 Stresses and Displacement	450
8.8	Rotating Disks of Variable Thickness	453
8.9	Rotating Disks of Uniform Stress	456
8.10	Thermal Stresses in Thin Disks	458
	8.10.1 Annular Disk	459
	8.10.2 Solid Disk	459
8.11	Thermal Stress in Long Circular Cylinders	460
	8.11.1 Solid Cylinder	460
	8.11.2 Cylinder with a Central Circular Hole	461
	8.11.3 Special Case	464
8.12	Finite Element Solution	464
	8.12.1 Axisymmetric Element	464
	References	466
	Problems	466
Chap	ter 9 Beams on Elastic Foundations	473
9.1	Introduction	473
9.2	General Theory	473

9.3	Infinite Beams	475
9.4	Semi-Infinite Beams	480
9.5	Finite Beams	483
9.6	Classification of Beams	484
9.7	Beams Supported by Equally Spaced Elastic Elements	485
9.8	Simplified Solutions for Relatively Stiff Beams	486
9.9	Solution by Finite Differences	488
9.10	Applications	490
	9.10.1 Grid Configurations of Beams	490
	References	492
	Problems	493
Chap	ter 10 Applications of Energy Methods	496
10.1	Introduction	496
Part .	A: Energy Principles	497
10.2	Work Done in Deformation	497
10.3	Reciprocity Theorem	498
10.4	Castigliano's Theorem	499
	10.4.1 Application to Bars and Beams	500
	10.4.2 Application to Trusses	500
	10.4.3 Use of a Fictitious Load	501
10.5	Unit- or Dummy-Load Method	506
10.6	Crotti–Engesser Theorem	508
10.7	Statically Indeterminate Systems	510
Part	B: Variational Methods	514
10.8	Principle of Virtual Work	514
	10.8.1 Variation in Strain Energy	514
	10.8.2 Virtual Work Done by Forces	515
10.9	Principle of Minimum Potential Energy	515
10.10	Deflections by Trigonometric Series	517
	10.10.1 Strain Energy	518
	10.10.2 Virtual Work	518
10.11	Rayleigh–Ritz Method	522
	References	524
	Problems	525
Chap	ter 11 Stability of Columns	534
11.1	Introduction	534
11.2	Critical Load	534
	11.2.1 Equilibrium Method	535
	11.2.2 Energy Method	536
11.3	Buckling of Pin-Ended Columns	536
	11.3.1 Modes of Buckling	538
11.4	Deflection Response of Columns	539

	11.4.1 Effects of Large Deflections	539
	11.4.2 Effects of Imperfections	540
	11.4.3 Effects of Inelastic Behavior	540
11.5	Columns with Different End Conditions	540
11.6	Critical Stress: Classification of Columns	543
	11.6.1 Long Columns	543
	11.6.2 Short Columns	544
	11.6.3 Intermediate Columns: Inelastic Buckling	544
11.7	Design Formulas for Columns	548
11.8	Imperfections in Columns	550
11.9	Local Buckling of Columns	552
11.10	Eccentrically Loaded Columns: Secant Formula	552
	11.10.1 Simplified Formula for Short Columns	554
11.11	Energy Methods Applied to Buckling	554
11.12	Solution by Finite Differences	562
11.13	Finite Difference Solution for Unevenly Spaced Nodes	567
	References	568
	Problems	569
Chap	ter 12 Plastic Behavior of Materials	578
12.1	Introduction	578
12.2	Plastic Deformation	579
	12.2.1 Slip Action: Dislocation	579
12.3	Idealized Stress-Strain Diagrams	580
	12.3.1 True Stress–True Strain Relationships	580
12.4	Instability in Simple Tension	582
12.5	Plastic Axial Deformation and Residual Stress	585
12.6	Plastic Deflection of Beams	588
12.7	Analysis of Perfectly Plastic Beams	590
	12.7.1 Shape Factor	593
	12.7.2 Plastic Hinge	593
12.8	Collapse Load of Structures: Limit Design	600
	12.8.1 Collapse Mechanism	600
	12.8.2 Ultimate Load by the Energy Method	601
12.9	Elastic-Plastic Torsion of Circular Shafts	605
	12.9.1 Yield Torque	606
	12.9.2 Elastic–Plastic Torque	606
	12.9.3 Ultimate Torque	607
	12.9.4 Residual Rotation and Stress	608
12.10	Plastic Torsion: Membrane Analogy	610
	12.10.1 Membrane–Roof Analogy	610
	12.10.2 Sand Hill Analogy	611
12 11		
14.11	Elastic–Plastic Stresses in Rotating Disks	612
12.11	Elastic–Plastic Stresses in Rotating Disks 12.11.1 Initial Yielding	612 612

	12.11.2 Partial Yielding	612
	12.11.3 Complete Yielding	614
12.12	Plastic Stress-Strain Relations	614
12.13	Plastic Stress-Strain Increment Relations	620
12.14	Stresses in Perfectly Plastic Thick-Walled Cylinders	623
	12.14.1 Complete Yielding	624
	12.14.2 Partial Yielding	626
	References	627
	Problems	628
Chapt	er 13 Stresses in Plates and Shells	635
13.1	Introduction	635
Part A	A: Bending of Thin Plates	635
13.2	Basic Assumptions	635
13.3	Strain–Curvature Relations	636
13.4	Stress, Curvature, and Moment Relations	638
13.5	Governing Equations of Plate Deflection	640
13.6	Boundary Conditions	642
13.7	Simply Supported Rectangular Plates	644
13.8	Axisymmetrically Loaded Circular Plates	648
13.9	Deflections of Rectangular Plates by the Strain-Energy Method	650
13.10	Sandwich Plates	652
	13.10.1 Design of Sandwich Beams and Plates	653
13.11	Finite Element Solution	654
	13.11.1 Strain, Stress, and Elasticity Matrices	655
	13.11.2 Displacement Function	655
	13.11.3 Stiffness Matrix	657
	13.11.4 External Nodal Forces	657
Part I	8: Membrane Stresses in Thin Shells	657
13.12	Theories and Behavior of Shells	657
13.13	Simple Membrane Action	658
13.14	Symmetrically Loaded Shells of Revolution	660
	13.14.1 Equations of Equilibrium	661
	13.14.2 Conditions of Compatibility	662
13.15	Some Typical Cases of Shells of Revolution	662
	13.15.1 Spherical Shell	662
	13.15.2 Conical Shell	663
	13.15.3 Circular Cylindrical Shell	664
13.16	Thermal Stresses in Compound Cylinders	668
13.17	Cylindrical Shells of General Shape	670
	References	673
	Problems	673

Appe	ndix A	Problem Formulation and Solution	679
A.1	Basic	Method	679
	A.1.1	Numerical Accuracy	680
	A.1.2	Daily Planning	680
Appe	ndix B	Solution of the Stress Cubic Equation	682
B.1	Princi	pal Stresses	682
	B.1.1	Direction Cosines	683
Appe	ndix C	Moments of Composite Areas	687
C.1 Centro		oid	687
C.2	Mome	ents of Inertia	690
	C.2.1	Parallel Axis Theorem	690
	C.2.2	Principal Moments of Inertia	692
Appe	ndix D	Tables and Charts	699
D. 1	Charts	s of Stress Concentration Factors	705
Appe	ndix E	Introduction to MATLAB	710
Ansv	vers to S	Selected Problems	713
Inde	X		722

Preface

INTRODUCTION

Advanced Mechanics of Materials and Applied Elasticity, Sixth Edition, is an outgrowth of classroom notes prepared in connection with advanced undergraduate and first-year graduate courses in the mechanics of solids and elasticity. It is designed to satisfy the requirements of courses subsequent to an elementary treatment of the strength of materials. In addition to its applicability to aeronautical, civil, and mechanical engineering and to engineering mechanics curricula, the text is useful to practicing engineers. Emphasis is given to *numerical techniques* (which lend themselves to computerization) in the solution of problems resisting *analytical treatment*. The attention devoted to numerical solutions is not intended to deny the value of classical analysis, which is given a rather full treatment. Instead, the coverage provided here seeks to fill what we believe to be a void in the world of textbooks.

We have attempted to present a balance between the theory necessary to gain insight into the mechanics, but which can often offer no more than crude approximations to real problems because of simplifications related to geometry and conditions of loading, and numerical solutions, which are so useful in presenting stress analysis in a more realistic setting. This text emphasizes those aspects of theory and application that prepare a student for more advanced study or for professional practice in design and analysis.

The theory of elasticity plays three important roles in the text. First, it provides exact solutions where the configurations of loading and boundary are relatively simple. Second, it provides a check on the limitations of the mechanics of materials approach. Third, it serves as the basis of approximate solutions employing numerical analysis.

To make the text as clear as possible, the fundamentals of the mechanics of materials are addressed as necessary. The physical significance of the solutions and practical applications are also emphasized. In addition, we have made a special effort to illustrate important principles and applications with numerical examples. Consistent with announced national policy, problems are included in the text in which the physical quantities are expressed in the International System of Units (SI). All important quantities are defined in both SI and U.S. Customary System (USCS) of units. A sign convention, consistent with vector mechanics, is employed throughout for loads, internal forces, and stresses. This convention conforms to that used in most classical strength of materials and elasticity texts, as well as to that most often employed in the numerical analysis of complex structures.

ORGANIZATION OF THE TEXT

Because of its extensive subdivision into a variety of topics and use of alternative methods of analysis, this text provides great flexibility for instructors when choosing assignments to cover courses of varying length and content. Most chapters are substantially self-contained, so the order of presentation can be smoothly altered to meet an instructor's preference. Ideally, Chapters 1 and 2, which address the analysis of basic concepts, should be studied first. The emphasis placed on the treatment of two-dimensional problems in elasticity (Chapter 3) may then differ according to the scope of the course.

This sixth edition of *Advanced Mechanics of Materials and Applied Elasticity* seeks to preserve the objectives and emphases of the previous editions. Every effort has been made to provide a more complete and current text through the inclusion of new material dealing with the fundamental principles of stress analysis and design: stress concentrations, contact stresses, failure criteria, fracture mechanics, compound cylinders, finite element analysis (FEA), energy and variational methods, buckling of stepped columns, common shell types, case studies in analysis and design, and MATLAB solutions. The entire text has been reexamined, and many improvements have been made throughout by a process of elimination and rearrangement. Some sections have been expanded to improve on previous expositions.

The references (identified in *brackets*), which are provided as an aid to those students who wish to pursue certain aspects of a subject in further depth, have been updated and listed at the end of each chapter. We have resisted the temptation to increase the material covered except where absolutely necessary. Nevertheless, we have added a number of illustrative examples and problems important in engineering practice and design. Extra care has been taken in the presentation and solution of the sample problems. All the problem sets have been reviewed and checked to ensure both their clarity and their numerical accuracy. Most changes in subject-matter coverage were prompted by the suggestions of faculty familiar with earlier editions.

In this sixth edition, we have maintained the previous editions' clarity of presentation, simplicity as the subject permits, unpretentious depth, an effort to encourage intuitive understanding, and a shunning of the irrelevant. In this context, as throughout, emphasis is placed on the use of fundamentals to help build students' understanding and ability to solve the more complex problems.

SUPPLEMENTS

The book is accompanied by a comprehensive instructor's *Solutions Manual*. Written and class tested, it features complete solutions to all problems in the text. Answers to selected problems are given at the end of the book. The password-protected Solutions Manual is available for adopters at the Pearson Instructor Resource Center, pearsonhighered.com/irc.

Optional Material is also available from the Pearson Resource Center, pearsonhighered.com/irc. This material includes PowerPoint slides of figures and tables, and solutions using MATLAB for a variety of sample problems of practical importance. The book, however, is independent of any software package.

Register your copy of *Advanced Mechanics of Materials and Applied Elasticity, Sixth Edition*, on the InformIT site for convenient access to updates and corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN (9780134859286) and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow that link to access any available bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.

Acknowledgments

It is a particular pleasure to acknowledge the contributions of those who assisted in the evolution of the text. Thanks, of course, are due to the many readers who have contributed general ideas and to reviewers who have made detailed comments on previous editions. These notably include the following: F. Freudenstein, Columbia University; R. A. Scott, University of Michigan; M. W. Wilcox and Y. Chan Jian, Southern Methodist University; C. T. Sun, University of Florida; B. Koplik, H. Kountouras, K. A. Narh, R. Sodhi, and C. E. Wilson, New Jersey Institute of Technology; H. Smith, Jr., South Dakota School of Mines and Technology; B. P. Gupta, Gannon University; S. Bang, University of Notre Dame; B. Koo, University of Toledo; J. T. Easley, University of Kansas; J. A. Bailey, North Carolina State University; W. F. Wright, Vanderbilt University; R. Burks, SUNY Maritime College; G. E. O. Widera, University of Illinois; R. H. Koebke, University of South Carolina; B. M. Kwak, University of Iowa; G. Nadig, Widener University; R. L. Brown, Montana State University; S. H. Advani, West Virginia University; E. Nassat, Illinois Institute of Technology; R. I. Sann, Stevens Institute of Technology; C. O. Smith, University of Nebraska; J. Kempner, Polytechnic University of New York; and P. C. Prister, North Dakota State University; R. Wetherhold, University of Buffalo, SUNY; and Shaofan Li, University of California at Berkeley.

Accuracy checking of the problems, proofreading, and typing of the *Solutions Manual* were done expertly by my former student, Dr. Youngjin Chung. Also contributing considerably to this volume with typing new inserts, scanning some figures, limited proofreading, and cover design was Errol A. Ugural. Their hard work is much appreciated. I am deeply indebted to my colleagues who have found the text useful through the years, as well as to Laura Lewin, executive editor at Pearson, who encouraged development of this edition. Lastly, I am very thankful for the support and understanding of my wife Nora, daughter Aileen, and son Errol during preparation of this book.

Ansel C. Ugural Holmdel, New Jersey

About the Authors

Ansel C. Ugural, Ph.D., has been a research and visiting professor of mechanical and civil engineering at the New Jersey Institute of Technology. He has taught in the engineering mechanics department at the University of Wisconsin. Dr. Ugural also served as chairman and tenured professor of mechanical engineering at Fairleigh Dickinson University for twenty years. He has considerable and diverse industrial experience in both full-time and consulting capacities as a design, development, and research engineer.

Professor Ugural earned his MS in mechanical engineering and PhD in engineering mechanics from the University of Wisconsin–Madison. Dr. Ugural was a National Science Foundation (NSF) fellow. He has been a member of several professional societies, including the American Society of Mechanical Engineers and the American Society of Engineering Education. He is also listed in *Who's Who in Engineering*.

Dr. Ugural is the author of several books, including *Mechanics of Materials; Mechanical Design: An Integrated Approach; Mechanical Design of Machine Components; Stresses in Beams, Plates, and Shells;* and *Plates and Shells: Theory and Analysis.* Most of these texts have been translated into Korean, Chinese, and Portuguese. In addition, Professor Ugural has published numerous articles in trade and professional journals.

Saul K. Fenster, Ph.D., served as president and tenured professor at New Jersey Institute of Technology for more than two decades. In addition, he has held varied positions at Fairleigh Dickinson University and taught at the City University of New York. His experience includes membership on a number of corporate boards and economic development commissions. Fenster is a fellow of the American Society of Mechanical Engineers, the American Society for Engineering Education, and the American Society for Manufacturing Engineers. He is coauthor of a text on mechanics.

Symbols

R

Roman	Letters
A	area
В	width
С	carryover factor, torsional rigidity
С	distance from neutral axis to outer fiber
D	distribution factor, flexural rigidity of plate
[D]	elasticity matrix
d	diameter, distance
Ε	modulus of elasticity in tension or compression
E_s	modulus of plasticity or secant modulus
E_t	tangent modulus
е	dilatation, distance, eccentricity
$\{F\}$	nodal force matrix of bar and beam finite elements
F	body force per unit volume, concentrated force
f	coefficient of friction
$\{f\}$	displacement function of finite element
G	modulus of elasticity in shear or modulus of rigidity
g	acceleration of gravity ($\approx 9.81 \text{ m/s}^2$)
h	depth of beam, height, membrane deflection, mesh width
Ι	moment of inertia of area, stress invariant
J	polar moment of inertia of area, strain invariant
Κ	bulk modulus, spring constant of an elastic support, stiffness factor, thermal con-
	ductivity, fatigue factor, strength coefficient, stress concentration factor
[K]	stiffness matrix of whole structure
k	constant, modulus of elastic foundation, spring constant
[k]	stiffness matrix of finite element
L	length, span
l, m, n	direction cosines
М	moment
M_{xy}	twisting moment in plates
т	moment caused by unit load

N	fatigue life (cycles), force
п	factor of safety, number, strain hardening index
Р	concentrated force
р	distributed load per unit length or area, pressure, stress resultant
Q	first moment of area, heat flow per unit length, shearing force
$\{Q\}$	nodal force matrix of two-dimensional finite element
R	radius, reaction
r	radius, radius of gyration
<i>г,</i> Ө	polar coordinates
S	elastic section modulus, shear center
S	distance along a line or a curve
Т	temperature, twisting couple or torque
t	thickness
U	strain energy
U_o	strain energy per unit volume
U^*	complementary energy
u, v, w	components of displacement
V	shearing force, volume
υ	velocity
W	weight, work
<i>x</i> , <i>y</i> , <i>z</i>	rectangular coordinates
Ζ	plastic section modulus

Greek Letters

alight, coefficient of thermal expansion, form factor for site	α	angle,	coefficient	of thermal	expansion,	form	factor	for she	ear
--	---	--------	-------------	------------	------------	------	--------	---------	-----

- β numerical factor, angle
- γ shear strain, weight per unit volume or specific weight, angle
- δ deflection, finite difference operator, variational symbol, displacement
- $\{\delta\}$ nodal displacement matrix of finite element
- Δ change of a function
- ε normal strain
- θ angle, angle of twist per unit length, slope
- v Poisson's ratio
- λ axial load factor, Lamé constant
- Π potential energy
- ρ density (mass per unit volume), radius
- σ normal stress
- τ shear stress
- ϕ total angle of twist
- Φ stress function
- ω angular velocity
- ψ stream function

This page intentionally left blank

Analysis of Stress

1.1 INTRODUCTION

There are two major parts to this chapter. Review of some important fundamentals of statics and mechanics of solids, the concept of stress, modes of load transmission, the general sign convention for stress and force resultants that will be used throughout the book, and analysis and design principles are provided first. This is followed by treatment of changing the components of the state of stress given in one set of coordinate axes to any other set of rotated axes, as well as variation of stress within and on the boundaries of a loadcarrying member. Plane stress and its transformation are of basic importance, since these conditions are most common in engineering practice. This chapter is therefore also a brief guide and introduction to the remainder of the text.

1.1.1 Mechanics of Materials and Theory of Elasticity

The basic structure of matter is characterized by nonuniformity and discontinuity attributable to its various subdivisions: molecules, atoms, and subatomic particles. Our concern in this text is not with the particulate structure, however. Instead, it will be assumed that the matter with which we are concerned is *homogeneous* and *continuously* distributed over its volume. There is the clear implication in such an approach that the smallest element cut from the body possesses the same properties as the body. Random fluctuations in the properties of the material are, therefore, of no consequence. This approach is that of *continuum mechanics*, in which solid elastic materials are treated as though they are continuous media rather than composed of discrete molecules. Of the states of matter, we are here concerned only with the solid, with its ability to maintain its shape without the need of a container and to resist continuous shear, tension, and compression.

In contrast with rigid-body statics and dynamics, which treat the external behavior of bodies (that is, the equilibrium and motion of bodies without regard to small deformations

associated with the application of load), the mechanics of solids is concerned with the relationships of external effect (forces and moments) to internal stresses and strains. Two notable approaches used in solid mechanics are the *mechanics of materials* or *elementary theory* (also called *technical theory*) and the *theory of elasticity*. The mechanics of materials focuses mainly on the more or less approximate solutions of practical problems. The theory of elasticity concerns itself largely with more mathematical analysis to determine the "exact" stress and strain distributions in a loaded body. The difference between these approaches lies primarily in the nature of the simplifying assumptions used, described in Section 3.1.

External forces acting on a body may be classified as *surface forces* and *body forces*. A surface force is of the *concentrated* type when it acts at a point; a surface force may also be distributed *uniformly* or *nonuniformly* over a finite area. Body forces are associated with the mass rather than the surfaces of a body, and are distributed throughout the volume of a body. Gravitational, magnetic, and inertia forces are all body forces. They are specified in terms of force per unit volume. All forces acting on a body, including the reactive forces caused by supports and body forces, are considered to be *external forces*. *Internal forces* are the forces that hold together the particles forming the body. Unless otherwise stated, we assume in this text that body forces can be neglected and that forces are applied steadily and slowly. The latter is referred to as *static loading*.

In the International System of Units (SI), force is measured in newtons (N). Because the newton is a small quantity, the kilonewton (kN) is often used in practice. In the U.S. Customary System (USCS), force is expressed in pounds (lb) or kilopounds (kips). We define all important quantities in both systems of units. However, in numerical examples and problems, SI units are used throughout the text consistent with international convention. (Table D.2 compares the two systems.)

1.1.2 Historical Development

The study of the behavior of members in tension, compression, and bending began with Leonardo da Vinci (1452–1519) and Galileo Galilei (1564–1642). For a proper understanding, however, it was necessary to establish accurate experimental description of a material's properties. Robert Hooke (1615–1703) was the first to point out that a body is deformed subject to the action of a force. Sir Isaac Newton (1642–1727) developed the concepts of Newtonian mechanics that became key elements of the strength of materials.

Leonard Euler (1707–1783) presented the mathematical theory of columns in 1744. The renowned mathematician Joseph-Louis Lagrange (1736–1813) received credit for developing a partial differential equation to describe plate vibrations. Thomas Young (1773–1829) established a coefficient of elasticity, Young's modulus. The advent of railroads in the late 1800s provided the impetus for much of the basic work in this area. Many famous scientists and engineers, including Coulomb, Poisson, Navier, St. Venant, Kirchhoff, and Cauchy, were responsible for advances in mechanics of materials during the eighteenth and nineteenth centuries. The British physicist William Thomas Kelvin (1824–1907), better known by his knighted name, Sir Lord Kelvin, first demonstrated that torsional moments acting at the edges of plates could be decomposed into shearing forces. The prominent English mathematician Augustus Edward Hough Love (1863–1940) introduced simple analysis of shells, known as Love's approximate theory.

Over the years, most basic problems of solid mechanics had been solved. Stephan P. Timoshenko (1878–1972) made numerous original contributions to the field of applied mechanics and wrote pioneering textbooks on the mechanics of materials, theory of elasticity, and theory of elastic stability. The theoretical base for modern strength of materials had been developed by the end of the nineteenth century. Since that time, problems associated with the design of aircraft, space vehicles, and nuclear reactors have led to many studies of the more advanced phases of the subject. Consequently, the mechanics of materials is being expanded into the theories of elasticity and plasticity.

In 1956, Turner, Clough, Martin, and Topp introduced the *finite element method*, which permits the numerical solution of complex problems in solid mechanics in an economical way. Many contributions in this area are owed to Argyris and Zienkiewicz. The recent trend in the development is characterized by heavy reliance on high-speed computers and by the introduction of more rigorous theories. Numerical methods presented in Chapter 7 and applied in the subsequent chapters have clear application to computation by means of electronic digital computers. Research in the foregoing areas is ongoing, not only to meet demands for treating complex problems, but also to justify further use and limitations on which the theory of solid mechanics is based.

Although a widespread body of knowledge exists at present, mechanics of materials and elasticity remain fascinating subjects, as their areas of application continue to expand.* The literature dealing with various aspects of solid mechanics is voluminous. For those seeking more thorough treatment, selected references are identified in brackets and compiled at the end of each chapter.

1.2 SCOPE OF THE BOOK

As stated in the preface, this book is intended for advanced undergraduate and graduate engineering students as well as engineering professionals. To make the text as clear as possible, attention is given to the fundamentals of solid mechanics and chapter objectives. A special effort has been made to illustrate important principles and applications with numerical examples. Emphasis is placed on a thorough presentation of both classical topics in advanced mechanics of materials and applied elasticity and selected advanced topics. The physical behavior of members is first explained, and this behavior is then modeled to develop the theory.

The usual objective of the mechanics of materials and theory of elasticity is the examination of the load-carrying capacity of a body from three standpoints: *strength*, *stiffness*, and *stability*. Recall that these quantities relate, respectively, to the ability of a member to resist permanent deformation or fracture, to resist deflection, and to retain its equilibrium configuration. For instance, when loading produces an abrupt shape change of a member, instability occurs; similarly, an inelastic deformation or an excessive magnitude of deflection in a member will cause malfunction in normal service. Based on the *fundamental principles* (Section 1.3), these behaviors are discussed in later chapters for various types

^{*}Historical reviews of the mechanics of materials and the theory of elasticity are given in Refs. 1.1 through 1.3.

of structural members. *Failure* by yielding and fracture of the materials under combined loading is taken up in detail in Chapter 4.

Our main concern is the analysis of stress and deformation within a loaded body, which is accomplished by application of one of the methods described in the next section. For this purpose, the analysis of loads is essential. A structure or machine cannot meet its expectations unless its design is based on realistic operating loads. The principal topics under the heading of *mechanics of solids* may be summarized as follows:

- 1. Analysis of the stresses and deformations within a body subject to a prescribed system of forces. This is accomplished by solving the governing equations that describe the stress and strain fields (theoretical stress analysis). It is often advantageous, where the shape of the structure or conditions of loading preclude a theoretical solution or where verification is required, to apply the laboratory techniques of experimental stress analysis.
- **2.** Determination by theoretical analysis or by experiment of the limiting values of load that a structural element can sustain without suffering damage, failure, or compromise of function.
- **3.** Determination of the body shape and selection of the materials that are most efficient for resisting a prescribed system of forces under specified conditions of operation, such as temperature, humidity, vibration, and ambient pressure. This is the design function.

The design function, item 3, clearly relies on the theoretical analyses results obtained via items 1 and 2; thus, this text focuses on those topics. In particular, emphasis is placed on the development of the equations and methods by which detailed analysis can be accomplished.

The ever-increasing industrial demand for more sophisticated structures and machines calls for a good grasp of the concepts of stress and strain and the behavior of materials—and a considerable degree of ingenuity. This text, at the very least, provides the student with the ideas and information necessary for an understanding of the advanced mechanics of solids and encourages use of the creative process based on that understanding. Complete, carefully drawn free-body diagrams are used to visualize the processes involved, though the subject matter can be learned best by solving problems of practical importance. A thorough grasp of fundamentals will prove of great value in attacking new and unfamiliar problems.

1.3 ANALYSIS AND DESIGN

Throughout this text, a fundamental procedure for analysis in solving mechanics of solids problems is used repeatedly. The complete analysis of load-carrying structural members by the **method of equilibrium** requires consideration of three conditions related to certain laws of forces, laws of material deformation, and geometric compatibility. These essential relationships, called the *basic principles of analysis*, are as follows:

1. Equilibrium conditions. The equations of equilibrium of forces must be satisfied throughout the member.

- **2.** Material behavior. The stress-strain or *force-deformation relations* (for example, Hooke's law) must apply to the behavior of the material of which the member is constructed.
- **3. Geometry of deformation**. The *compatibility conditions* of deformations must be satisfied: that is, each deformed portion of the member must fit together with adjacent portions. (Matter of compatibility is not always broached in mechanics of materials analysis.)

The stress and deformation obtained through the use of these three principles must conform to the conditions of loading imposed at the boundaries of a member. This circumstance is known as satisfying the **boundary conditions**. Applications of the preceding procedure are illustrated in the problems presented in this text. Note, however, that it is not always necessary to execute an analysis in the precise sequence of steps listed previously.

As an alternative to the equilibrium methods, the analysis of stress and deformation can be accomplished by employing **energy methods** (Chapter 10), which are based on the concept of strain energy. Both the equilibrium and the energy approaches can provide solutions of acceptable accuracy where configurations of loading and member shape are regular, and they can be used as the basis of **numerical methods** in the solution of more realistic problems.

Engineering design is the process of applying science and engineering techniques to define a structure or system in detail to allow its realization. The objective of a *mechanical design* procedure includes finding the proper materials, dimensions, and shapes of the members of a structure or machine so that they will support the prescribed loads and perform without failure. *Machine design* entails creating new or improved machines to accomplish specific purposes. Usually, *structural design* deals with any engineering discipline that requires a structural member or system.

Design is the essence, art, and intent of engineering. A good design satisfies performance, cost, and safety requirements. An *optimum design* is the best solution to a design problem within given restrictions. Efficiency of the optimization may be gaged by such criteria as minimum weight or volume, optimum cost, and any other standard deemed appropriate. When faced with a design problem characterized by many choices, a designer may often make decisions on the basis of past experience, so as to reduce the problem to a single variable. A solution to determine the optimum result becomes straightforward in such a situation.

A plan for satisfying a need usually includes preparation of individual preliminary design. Each *preliminary design* involves a thorough consideration of the loads and actions that the structure or machine must support. For each situation, an analysis is necessary. Design decisions—that is, choosing reasonable values of the safety factors and material properties—are significant in the preliminary design process. We note that the design of numerous structures, such as pressure vessels, space missiles, aircrafts, dome roofs, and bridge decks, is based on the theories of plates and shells. For example, a water storage tank can be satisfactorily designed using the shell-membrane theory (Section 13.12). By comparison, the design of a missile casing demands a more precise shell-bending theory so as to minimize weight and materials. Similarly, the design of

a nozzle-to-cylinder junction in a nuclear reactor may necessitate an elaborate finite element analysis.

1.3.1 Role of Analysis in Design

This text provides an elementary treatment of the concept of "design to meet strength requirements" as those requirements relate to individual machine or structural components. That is, the geometric configuration and material of a component are preselected and the applied loads are specified. Then, the basic formulas for stress are employed to select members of adequate size in each case. The **role of analysis in design** may be observed best in examining the phases of a design process. The following is *rational procedure in the design* of a load-carrying member:

- **1.** *Evaluate the most likely modes of failure of the member.* Failure criteria that predict the various modes of failure under anticipated conditions of service are discussed in Chapter 4.
- 2. Determine the expressions relating applied loading to such effects as stress, strain, and *deformation*. Often, the member under consideration and conditions of loading are so significant or so amenable to solution as to have been the subject of prior analysis. For these situations, textbooks, handbooks, journal articles, and technical papers are good sources of information. If the situation is unique, however, a mathematical derivation specific to the case at hand is required.
- **3.** Determine the maximum usable value of stress, strain, or energy. This value is obtained either by reference to compilations of material properties or by experimental means such as simple tension test and is used in connection with the relationship derived in step 2.
- **4.** Select a design factor of safety. This is to account for uncertainties in a number of aspects of the design, including those related to the actual service loads, material properties, or environmental factors. An important area of uncertainty is connected with the assumptions made in the analysis of stress and deformation. Also, we are not likely to have a secure knowledge of the stresses that may be introduced during machining, assembly, and shipment of the element.

The design factor of safety also reflects the consequences of failure—for example, the possibility that failure will result in loss of human life or injury or in costly repairs or danger to other components of the overall system. For these reasons, the design factor of safety is also sometimes called the *factor of ignorance*. The uncertainties encountered during the design phase may be of such magnitude as to lead to a design carrying extreme weight, volume, or cost penalties. It may then be advantageous to perform thorough tests or more exacting analysis rather to rely on overly large design factors of safety.

1.3.2 Selection of Factor of Safety

The *true factor of safety*, usually referred to simply as the factor of safety, can be determined only after the member is constructed and tested. This factor is the ratio of the maximum load that the member *can sustain* under severe testing without failure to the maximum load that is *actually* carried under normal service conditions (the working load). When a linear relationship exists between the load and the stress produced by the load, the *factor of safety n* may be expressed as

$$n = \frac{\text{maximum usable stress}}{\text{allowable stress}}$$
(1.1)

Maximum usable stress represents either the yield stress or the ultimate stress. The allowable stress is the working stress. The factor of safety must be greater than 1.0 if failure is to be avoided. Modern engineering design accounts for all possible environmental, loading, stress, and material conditions, leaving relatively few items of uncertainty to be covered by a factor of safety. Values for the factor of safety, selected by the designer on the basis of experience and judgment, range from approximately 1.25 to 4.

In the nuclear reactor industries, the safety factor is of prime significance in the face of many unknown effects; hence the factor of safety may be as high as 5. The use of a factor of safety in design is a reliable, time-proven approach. If this factor is properly selected, sound and safe designs are obtained by using it. For most applications, appropriate factors of safety are found in various construction and manufacturing codes. A concept closely related to safety factor is *reliability* defined as the statistical measure of the probability that a member will not fail in service [Ref. 1.4].

The procedure outlined in Section 1.3.1 is not always conducted in as formal a fashion as may have been implied in that discussion. In some design phases, one or more steps may be regarded as unnecessary or obvious on the basis of previous experience. Suffice it to say that complete design solutions are not unique, involve a consideration of many factors, and often require a trial-and-error process. Stress is just one consideration in design. Other phases of the design of components include the prediction of the deformation of a given component under given loading and the consideration of buckling. The methods of determining deformation are discussed in later chapters of this text. Note that analysis and design are closely related, and the examples and problems that appear throughout this book illustrate that connection.

We conclude this section with an appeal to the reader to exercise a degree of skepticism when applying formulas for which the limitations of use or the areas of applicability are uncertain. The relatively simple form of many formulas usually results from rather severe restrictions in the formula's derivation. These limitations may include simplified boundary conditions and shapes, limitations on stress and strain, and the neglect of certain complicating factors. Designers and stress analysts must be aware of such restrictions lest their work be of no value or, even worse, lead to dangerous inadequacies.

In this chapter, we focus on the state of *stress at a point* and the *variation of stress* throughout an elastic body. The latter is dealt with in Sections 1.8 and 1.16 and the former in the balance of the chapter.

1.3.3 Case Studies

A general *case study* in *analysis* may move step by step through the problem formulation and solution stages, as outlined in Appendix A. The basic geometry and loading on a member must be selected before any analysis can be done. For example, the stress that would occur in a bar under a load would depend on whether the loading gives rise to tension, transverse shear, direct shear, torsion, bending, or contact stresses. In this case, *uniform stress* patterns may be more efficient at carrying the load than others. Therefore, by carefully studying the types of loads and stress patterns that can arise in structures, some insight can be gained into improved shapes and orientations of components. A few case studies introduced in this text involve situations encountered during the analysis and design of structural members.

1.4 CONDITIONS OF EQUILIBRIUM

A *structure* is a unit consisting of interconnected members supported in such a way that it is capable of carrying loads in static equilibrium. Structures are of four general types: frames, trusses, machines, and thin-walled (plate and shell) structures. *Frames* and *machines* are structures containing multiforce members. The former support loads and are usually stationary, fully restrained structures. The latter transmit and modify forces (or power) and always contain moving parts. The *truss* provides both a practical and an economical solution, particularly in the design of bridges and buildings. When the truss is loaded at its joints, the only force in each member is an axial force, either tensile or compressive.

The analysis and design of structural and machine components require a knowledge of the distribution of forces within such members. Fundamental concepts and conditions of static equilibrium provide the necessary background for the determination of internal as well as external forces. In Section 1.6, we shall see that components of internal-forces resultants have special meaning in terms of the type of deformations they cause, as applied, for example, to slender members. The surface forces that develop at support points of a structure, which are called *reactions*, equilibrate the effects of the applied loads on the structures.

The **equilibrium** of forces is the state in which the forces applied on a body are in balance. Newton's first law states that if the resultant force acting on a particle (the simplest body) is zero, the particle will remain at rest or will move with constant velocity. Statics is concerned essentially with the case where the particle or body remains at rest. A complete free-body diagram is essential in the solution of equilibrium.

Let us consider the equilibrium of a body in space. In this three-dimensional case, the **conditions of equilibrium** require the satisfaction of the following **equations of statics**:

$$\Sigma F_x = 0 \qquad \Sigma F_y = 0 \qquad \Sigma F_z = 0$$

$$\Sigma M_x = 0 \qquad \Sigma M_y = 0 \qquad \Sigma M_z = 0$$
(1.2)

These equations state that the sum of all forces acting on a body in any direction must be zero; the sum of all moments about any axis must be zero.

In a *planar problem*, where all forces act in a single (xy) plane, there are only three independent equations of statics:

$$\Sigma F_x = 0$$
 $\Sigma F_v = 0$ $\Sigma M_A = 0$ (1.3)

That is, the sum of all forces in any (x, y) directions must be zero, and the resultant moment about axis *z* or any point *A* in the plane must be zero. By replacing a force summation with an equivalent moment summation in Eqs. (1.3), the following *alternative* sets of conditions are obtained:

$$\Sigma F_x = 0 \qquad \Sigma M_A = 0 \qquad \Sigma M_B = 0 \qquad (1.4a)$$

provided that the line connecting the points A and B is not perpendicular to the x axis, or

$$\Sigma M_A = 0 \qquad \Sigma M_B = 0 \qquad \Sigma M_C = 0 \tag{1.4b}$$

if points *A*, *B*, and *C* are *not* collinear. Clearly, the judicious selection of points for taking moments can often simplify the algebraic computations.

A structure is *statically determinate* when all forces on its members can be found by using only the conditions of equilibrium. If there are more unknowns than available equations of statics, the problem is called *statically indeterminate*. The degree of *static indeterminacy* is equal to the difference between the number of unknown forces and the number of relevant equilibrium conditions. Any reaction that is in excess of those that can be obtained by statics alone is termed *redundant*. Thus, the number of redundants is the same as the degree of indeterminacy.

1.5 DEFINITION AND COMPONENTS OF STRESS

Stress and strain are most important concepts for a comprehension of the mechanics of solids. They permit the mechanical behavior of load-carrying components to be described in terms fundamental to the engineer. Both the analysis and the design of a given machine or structural element involve the determination of stress and material stress–strain relationships. The latter is taken up in Chapter 2.

Consider a body in equilibrium subject to a system of external forces, as shown in Fig. 1.1a. Under the action of these forces, internal forces are developed within the body. To examine these forces at some interior point Q, we use an imaginary plane to cut the body at a section a-a through Q, dividing the body into two parts. As the forces acting on the entire body are in equilibrium, the forces acting on one part alone must be in

FIGURE 1.1. Method of sections: (a) sectioning of a loaded body; (b) free body with external and internal forces; (c) enlarged area ΔA with components of the force ΔF .