

Introductory CHEMISTRY SEVENTH EDITION IN SI UNITS Nivaldo J. Tro

INTRODUCTORY CHENISTRY SEVENTH EDITION IN SI UNITS

Nivaldo J. Tro

Product Management: Shabnam Dohutia, K.K. Neelakantan, Shahana Bhattacharya, and Kalyani Gandhi
 Content Production: Nitin Shankar
 Product Marketing: Ellie Nicholls
 Rights and Permissions: Anjali Singh and Ashish Vyas

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content

Cover image: ggw/Shutterstock

Pearson Education Limited

KAO Two KAO Park Hockham Way Harlow Essex CM17 9SR United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2024

The rights of Nivaldo J. Tro to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Introductory Chemistry, 7th Edition, ISBN 978-0-137-90133-3 by Nivaldo J. Tro, published by Pearson Education © 2023.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Acknowledgments of third-party content appear on page C-1, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, and Mastering[™] Chemistry are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees, or distributors.

This eBook may be available as a standalone product or integrated with other Pearson digital products like MyLab and Mastering. This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to remove any material in this eBook at any time.

ISBN 10 (Print): 1-292-72580-X ISBN 13 (Print): 978-1-292-72580-2 ISBN 13 (uPDF eBook): 978-1-292-72581-9

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

eBook formatted by B2R Technologies Pvt. Ltd.

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity, depth, and breadth of all learners' lived experiences.

We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, sex, sexual orientation, socioeconomic status, ability, age, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational content accurately reflects the histories and lived experiences of the learners we serve.

Accessibility

We are also committed to providing products that are fully accessible to all learners. As per Pearson's guidelines for accessible educational Web media, we test and retest the capabilities of our products against the highest standards for every release, following the WCAG guidelines in developing new products for copyright year 2022 and beyond.

You can learn more about Pearson's commitment to accessibility at

https://www.pearson.com/us/accessibility.html

- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content prompts deeper discussions with students and motivates them to expand their own learning (and worldview).

Contact Us

While we work hard to present unbiased, fully accessible content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

0	

Please contact us with concerns about any potential bias at

https://www.pearson.com/report-bias.html

For accessibility-related issues, such as using

assistive technology with Pearson products,

alternative text requests, or accessibility documentation, email the Pearson Disability Support team at **disability.support@pearson.com**

This page is intentionally left blank

About the Author

Nivaldo Tro has been teaching college chemistry since 1990 and is currently teaching at Santa Barbara City College. He received his Ph.D. in chemistry from Stanford University for work on developing and using optical techniques to study the adsorption and desorption of molecules to and from surfaces in ultrahigh vacuum. He then went on to the University of California at Berkeley, where he did postdoctoral research on ultrafast reaction dynamics in solution. Professor Tro has been awarded grants from the American Chemical Society Petroleum Research Fund, from the Research Corporation, and from the National Science Foundation to study the dynamics of various processes occurring in thin adlayer films adsorbed on dielectric surfaces. Professor Tro lives in Santa Barbara with his wife, Ann. In his leisure time, Professor Tro enjoys cycling, surfing, and being outdoors.

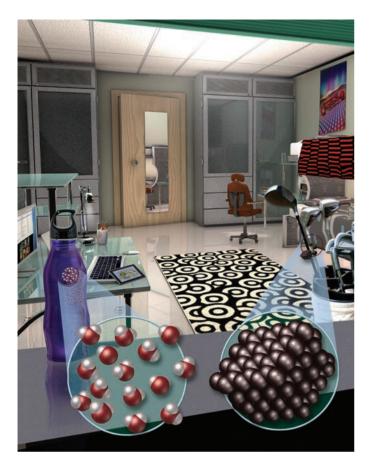
To Annie

This page is intentionally left blank

Contents

Preface

1 The Chemical World


1.1	Sand and Water	29
1.2	Chemicals Compose Ordinary Things	30
1.3	The Scientific Method: How Chemists Think	31
	EVERYDAY CHEMISTRY Combustion and the Scientific Method	33
1.4	Analyzing and Interpreting Data Identifying Patterns in Data 34 Interpreting Graphs 35	34
1.5	A Beginning Chemist: How to Succeed	37
Self-As	sessment Quiz	37
Key Te	rms	39
Exercis	es	39
Answers to Skillbuilder Exercises		41
Answers to Conceptual Checkpoints		41

2 Measurement and Problem Solving

2.1 2.2	The Metric Mix-up: A \$125 Million Unit Error Scientific Notation: Writing Large and	43
	Small Numbers	43
2.3	Significant Figures: Writing Numbers to Reflect Precision Counting Significant Figures 48 Exact Numbers 49	45
	CHEMISTRY IN THE MEDIA The COBE Satellite	
	and Very Precise Measurements That Illuminate Our Cosmic Past	50
2.4	Significant Figures in Calculations Multiplication and Division 51 Rounding 51 Addition and Subtraction 52	50
	Calculations Involving Both Multiplication/Division and Addition/Subtraction 53	
2.5	The Basic Units of Measurement The Base Units 55 Prefix Multipliers 56 Derived Units 56	54

2.6	Problem Solving and Unit Conversion Converting Between Units 57 General Problem-Solving Strategy 59	57
2.7	Solving Multistep Unit Conversion Problems	61
2.8	Unit Conversion in Both the Numerator and Denominator	63
2.9	Units Raised to a Power	65
	CHEMISTRY AND HEALTH Drug Dosage	65
2.10	Density Calculating Density 68 Density as a Conversion Factor 69	67
	CHEMISTRY AND HEALTH Density, Cholesterol, and Heart Disease	70
2.11	Numerical Problem-Solving Strategies	
	and the Solution Map	71
Self-A	ssessment Quiz	73
Key Terms		79
Exercises		79
Answers to Skillbuilder Exercises		89
Answers to Conceptual Checkpoints		89

3 Matter and Energy

3.1	In Your Room	91
3.2	What Is Matter?	92
3.3	Classifying Matter According to Its State: Solid, Liquid, and Gas	93
3.4	Classifying Matter According to Its Composition: Elements, Compounds, and Mixtures	95
3.5	Differences in Matter: Physical and Chemical Properties	98
3.6	Changes in Matter: Physical and Chemical Changes Separating Mixtures Through Physical Changes 101	99
3.7	Conservation of Mass: There Is No New Matter	101
3.8	Energy	103
	CHEMISTRY IN THE ENVIRONMENT <i>Getting</i> <i>Energy out of Nothing?</i> Units of Energy 104	103
3.9	Energy and Chemical and Physical Change	105
3.10	Temperature: Random Motion of	
	Molecules and Atoms	107
3.11	Temperature Changes: Heat Capacity	110
	EVERYDAY CHEMISTRY Coolers, Camping, and the Heat Capacity of Water	111

3.12 Energy and Heat Capacity Calculations	112
Self-Assessment Quiz	115
Key Terms	120
Exercises	121
Answers to Skillbuilder Exercises	129
Answers to Conceptual Checkpoints	129

4 Atoms and Elements 130

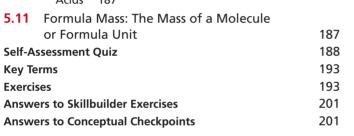
4.1	Experiencing Atoms at Tiburon	131
4.2	Indivisible: The Atomic Theory	132
4.3	The Nuclear Atom	133
4.4	The Properties of Protons, Neutrons,	
	and Electrons	135
	EVERYDAY CHEMISTRY Solid Matter?	136
4.5	Elements: Defined by Their Numbers	
	of Protons	137
4.6	Looking for Patterns: The Periodic Law	
	and the Periodic Table	140
4.7	Ions: Losing and Gaining Electrons Ions and the Periodic Table 146	144
4.8	Isotopes: When the Number	
	of Neutrons Varies	147
4.9	Atomic Mass: The Average Mass	
	of an Element's Atoms	150
	CHEMISTRY IN THE ENVIRONMENT Radioactive	
	Isotopes at Hanford, Washington	151
Self-As	sessment Quiz	153
Кеу Те	rms	156
Exercises		156
Answe	rs to Skillbuilder Exercises	165
Answers to Conceptual Checkpoints		165

5 Molecules and Compounds

90

5.1 Sugar and Salt 167 5.2 **Compounds Display Constant** Composition 168 5.3 Chemical Formulas: How to Represent Compounds 169 Polyatomic Ions in Chemical Formulas 171 Types of Chemical Formulas 172 5.4 A Molecular View of Elements and Compounds 173 Atomic Elements 173 Molecular Elements 173 Molecular Compounds 173 Ionic Compounds 174

Writing Formulas for Ionic Compounds Writing Formulas for Ionic Compounds Containing Only Monoatomic Ions 176 Writing Formulas for Ionic Compounds Containing Polyatomic Ions 177	176
Nomenclature: Naming Compounds	178
Naming Ionic Compounds Naming Binary Ionic Compounds Containing a Metal That Forms Only One Type of Cation 178 Naming Binary Ionic Compounds Containing a Metal That Forms More Than One Type of Cation 180 Naming Ionic Compounds Containing a Polyatomic Ion 181	178
EVERYDAY CHEMISTRY Polyatomic lons	182
Naming Molecular Compounds	183
Naming Acids Naming Binary Acids 184 Naming Oxyacids 185	184
Nomenclature Summary Ionic Compounds 186 Molecular Compounds 186 Acids 187	186
Formula Mass: The Mass of a Molecule or Formula Unit	187


5.5

5.6 5.7

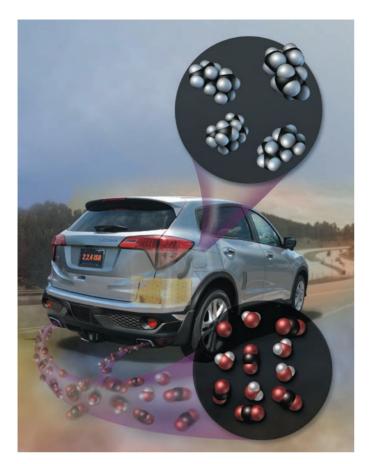
5.8

5.9

5.10

202

6 Chemical Composition


6.1	How Much Sodium?	203
6.2	Counting Nails by the Kilogram	204
6.3	Counting Atoms by the Gram Converting between Moles and Number of Atoms 205 Converting between Grams and Moles of an Element 206 Converting between Grams of an Element and Number of Atoms 209	205
6.4	Counting Molecules by the Gram Converting between Grams and Moles of a Compound 210 Converting between Grams of a Compound and Number of Molecules 212	210
6.5	Chemical Formulas as Conversion Factors Converting between Moles of a Compound and Moles of a Constituent Element 214 Converting between Grams of a Compound	213
6.6	and Grams of a Constituent Element 215 Mass Percent Composition of Compounds	217
	the sent composition of composition	,

6.7	Mass Percent Composition from a Chemical Formula	218
	CHEMISTRY AND HEALTH Fluoridation of Drinking Water	220
6.8	Calculating Empirical Formulas for Compounds Calculating an Empirical Formula from Experimental Data 221	220
6.9	Calculating Molecular Formulas for	
	Compounds	223
Self-A	ssessment Quiz	225
Key T	erms	231
Exercises		231
Answers to Skillbuilder Exercises		239
Answers to Conceptual Checkpoints		239

7 Chemical Reactions 240

7.1	Grade School Volcanoes, Automobiles,	
	and Laundry Detergents	241
7.2	Evidence of a Chemical Reaction	242
7.3	The Chemical Equation	245

7.4	How to Write Balanced Chemical Equations	247
7.5	Aqueous Solutions and Solubility: Compounds Dissolved in Water Aqueous Solutions 250 Solubility 251	250
7.6	Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid	253
7.7	Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations	256
7.8	Acid–Base and Gas-Evolution Reactions Acid–Base (Neutralization) Reactions 258 Gas-Evolution Reactions 259	258
	CHEMISTRY AND HEALTH Neutralizing Excess	
	Stomach Acid	261
7.9	Oxidation–Reduction Reactions	261
7.10	Classifying Chemical Reactions Classifying Chemical Reactions by What Atoms Do 264 Classification Flowchart 266	263
		260
	ssessment Quiz	268
Key Terms		273
Exercises		273
Answers to Skillbuilder Exercises		281
Answers to Conceptual Checkpoints		281

8 Quantities in Chemical Reactions

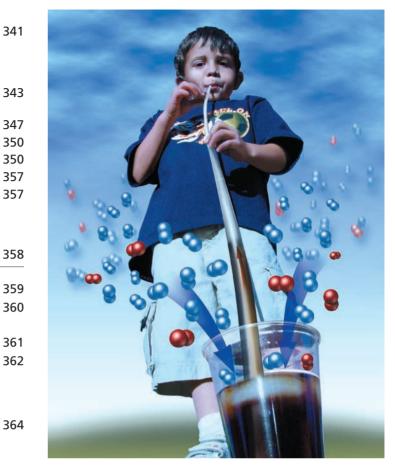
282

318

8.1	Climate Change: Too Much Carbon Dioxide	283
8.2	Making Pancakes: Relationships between Ingredients	284
8.3	Making Molecules: Mole-to-Mole Conversions	285
8.4	Making Molecules: Mass-to-Mass Conversions	287
8.5	More Pancakes: Limiting Reactant, Theoretical Yield, and Percent Yield	290
8.6	Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Masses of Reactants	294
8.7	Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction Sign of ΔH_{ren} 299	298
	EVERYDAY CHEMISTRY Bunsen Burners Stoichiometry of ΔH_{rxn} 300	299
Self-As	sessment Quiz	302
Key Tei	rms	306
Exercises		307
Answers to Skillbuilder Exercises		317
Answers to Conceptual Checkpoints		317

9 Electrons in Atoms and the Periodic Table

9.1	Blimps, Balloons, and Models of the Atom	319
9.2	Light: Electromagnetic Radiation	320
9.3	The Electromagnetic Spectrum	322
	CHEMISTRY AND HEALTH Radiation Treatment for Cancer	324
9.4	The Bohr Model: Atoms with Orbits	325
9.5	The Quantum-Mechanical Model: Atoms with Orbitals Baseball Paths and Electron Probability Maps 328 From Orbits to Orbitals 329	328
9.6	Quantum-Mechanical Orbitals and Electron Configurations Quantum-Mechanical Orbitals 329 Electron Configurations: How Electrons Occupy Orbitals 332	329
9.7	Electron Configurations and the Periodic Table	336
9.8	The Explanatory Power of the Quantum-Mechanical Model	339


9.9 Periodic Trends: Atomic Size, Ionization		
	Energy, and Metallic Character	341
	Atomic Size 341	
	Ionization Energy 343	
	CHEMISTRY AND HEALTH Pumping lons:	
	Atomic Size and Nerve Impulses	343
	Metallic Character 344	
Self-Assessment Quiz		347
Key Terms		350
Exercises		350
Answers to Skillbuilder Exercises		357
Answers to Conceptual Checkpoints		357

10 Chemical Bonding

10.1	Bonding Models and AIDS Drugs	359
10.2	Representing Valence Electrons with Dots	360
10.3	Lewis Structures of Ionic Compounds:	
	Electrons Transferred	361
10.4	Covalent Lewis Structures: Electrons Shared Single Bonds 362 Double and Triple Bonds 363	362
10.5	Writing Lewis Structures for Covalent	
	Compounds	364
	Writing Lewis Structures for	
	Polyatomic Ions 366	
	Exceptions to the Octet Rule 367	
10.6	Resonance: Equivalent Lewis Structures	
	for the Same Molecule	368
10.7	Predicting the Shapes of Molecules Representing Molecular Geometries on Paper 373	370
	CHEMISTRY AND HEALTH Fooled by	
	Molecular Shape	374
10.8	Electronegativity and Polarity: Why Oil	
	and Water Don't Mix	375
	Electronegativity 375	
	Polar Bonds and Polar Molecules 377	
	EVERYDAY CHEMISTRY How Soap Works	379
	sessment Quiz	380
Key Terms		383
Exercises		383
Answers to Skillbuilder Exercises		391
Answers to Conceptual Checkpoints		391

Gases

11.1	Extra-Long Straws	393
11.2	Kinetic Molecular Theory: A Model for Gases	394
11.3	Pressure: The Result of Constant Molecular Collisions	396

Pressure Units 397

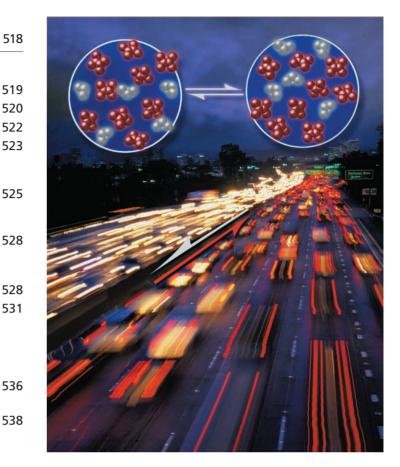
Pressure Unit Conversion 398	
Boyle's Law: Pressure and Volume	399
EVERYDAY CHEMISTRY Airplane Cabin	
Pressurization	400
EVERYDAY CHEMISTRY Extra-long Snorkels	404
Charles's Law: Volume and Temperature	404
The Combined Gas Law: Pressure,	
Volume, and Temperature	408
Avogadro's Law: Volume and Moles	410
The Ideal Gas Law: Pressure, Volume,	
Temperature, and Moles	412
Determining Molar Mass of a Gas	
	418
	410
Collecting Gases over Water 421	
Gases in Chemical Reactions	422
Molar Volume at Standard Temperature	
and Pressure 425	
CHEMISTRY IN THE ENVIRONMENT Air Pollution	427
ssessment Quiz	428
rms	432
ses	433
rs to Skillbuilder Exercises	441
ers to Conceptual Checkpoints	441
	Boyle's Law: Pressure and Volume EVERYDAY CHEMISTRY Airplane Cabin Pressurization EVERYDAY CHEMISTRY Extra-long Snorkels Charles's Law: Volume and Temperature The Combined Gas Law: Pressure, Volume, and Temperature Avogadro's Law: Volume and Moles The Ideal Gas Law: Pressure, Volume, Temperature, and Moles Determining Molar Mass of a Gas from the Ideal Gas Law 416 Ideal and Nonideal Gas Behavior 418 Mixtures of Gases Partial Pressure and Physiology 420 Collecting Gases over Water 421 Gases in Chemical Reactions Molar Volume at Standard Temperature and Pressure 425 CHEMISTRY IN THE ENVIRONMENT Air Pollution ssessment Quiz rms

12 Liquids, Solids, and Intermolecular Forces 442

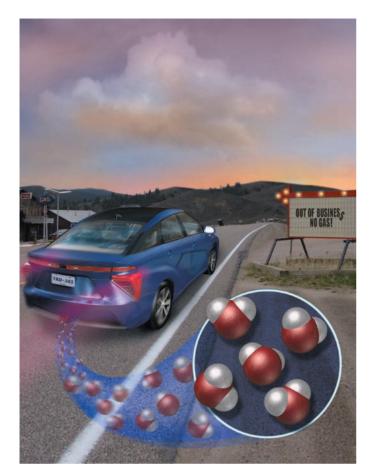
12.1	Coboxical Water	445
12.1	Spherical Water	443
12.2	Properties of Liquids and Solids	444
12.3	Intermolecular Forces in Action:	
	Surface Tension and Viscosity Surface Tension 446 Viscosity 446	445
12.4	Evaporation and Condensation	447
	Boiling 448	
	Energetics of Evaporation and	
	Condensation 449	
	Heat of Vaporization 450	
12.5	Melting, Freezing, and Sublimation	452
	Energetics of Melting and	
	Freezing 452	
	Heat of Fusion 453	
	Sublimation 455	
12.6	Types of Intermolecular Forces: Dispersion,	
	Dipole–Dipole, Hydrogen Bonding,	
	and Ion–Dipole	456
	Dispersion Force 456	
	Dipole–Dipole Force 457	

Hydrogen Bonding 459 Ion–Dipole Force 460	
CHEMISTRY AND HEALTH Hydrogen Bonding in DNA	461
12.7 Types of Crystalline Solids: Molecular, Ionic, and Atomic Molecular Solids 463 Ionic Solids 463 Atomic Solids 464	463
12.8 Water: A Remarkable Molecule	465
CHEMISTRY IN THE ENVIRONMENT Water Pollution and the Flint River Water Crisis	466
Self-Assessment Quiz	467
Key Terms	470
Exercises	
Answers to Skillbuilder Exercises	
Answers to Conceptual Checkpoints	

13 Solutions


13.1	Tragedy in Cameroon	479
13.2	Solutions: Homogeneous Mixtures	480
13.3	Solutions of Solids Dissolved in Water: How to Make Rock Candy Solubility and Saturation 482 Electrolyte Solutions: Dissolved Ionic Solids 483 How Solubility Varies with Temperature 484	481
13.4	Solutions of Gases in Water: How Soda Pop Gets Its Fizz	484
13.5	Specifying Solution Concentration: Mass Percent Mass Percent 486 Using Mass Percent in Calculations 487	486
13.6	Specifying Solution Concentration: Molarity Using Molarity in Calculations 490 Ion Concentrations 492	489
13.7	Solution Dilution	492
13.8	Solution Stoichiometry	494
13.9	Freezing Point Depression and Boiling Point Elevation: Making Water Freeze	
	Colder and Boil Hotter Freezing Point Depression 497	497
	EVERYDAY CHEMISTRY Antifreeze in Frogs Boiling Point Elevation 499	499
13.10	Osmosis: Why Drinking Salt Water	
	Causes Dehydration	501
	CHEMISTRY AND HEALTH Solutions in Medicine	502
	sessment Quiz	503
Key Te		508
Exercises		508
	rs to Skillbuilder Exercises	517
Answe	rs to Conceptual Checkpoints	517

Acids and Bases


14.1	Sour Patch Kids and International	
	Spy Movies	519
14.2	Acids: Properties and Examples	520
14.3	Bases: Properties and Examples	522
14.4	Molecular Definitions of Acids and Bases The Arrhenius Definition 523 The Brønsted–Lowry Definition 523	523
14.5	Reactions of Acids and Bases Neutralization Reactions 525 Acid Reactions 526	525
	EVERYDAY CHEMISTRY What Is in My Antacid? Base Reactions 528	528
14.6	Acid-Base Titration: A Way to Quantify	
	the Amount of Acid or Base in a Solution	528
14.7	Strong and Weak Acids and BasesStrong Acids531Weak Acids532Strong Bases534Weak Bases535	531
14.8	Water: Acid and Base in One	536
14.9	The pH and pOH Scales: Ways to	
	Express Acidity and Basicity Calculating pH from $[H_3O^+]$ 538 Calculating $[H_3O^+]$ from pH 540 The pOH Scale 541	538
14.10	Buffers: Solutions That Resist pH Change	542
	CHEMISTRY AND HEALTH Alkaloids	542
	CHEMISTRY AND HEALTH The Danger	
	of Antifreeze	544
	sessment Quiz	545
Key Tei		549
Exercis		550
Answers to Skillbuilder Exercises		557
Answers to Conceptual Checkpoints		557

Chemical Equilibrium

15.1	Life: Controlled Disequilibrium	559
15.2	The Rate of a Chemical Reaction Collision Theory 561 How Concentration Affects the Rate of a Reaction 561 How Temperature Affects the Rate of a Reaction 562	560
15.3	The Idea of Dynamic Chemical	563
45.4	Equilibrium	202
15.4	The Equilibrium Constant: A Measure of How Far a Reaction Goes Writing Equilibrium Constant Expressions for Chemical Reactions 566 The Significance of the Equilibrium Constant 566	565

15.5	Heterogeneous Equilibria: The Equilibrium Expression for Reactions Involving a Solid or a Liquid	568	
15.6	Calculating and Using Equilibrium Constants Calculating Equilibrium Constants 569 Using Equilibrium Constants in Calculations 57	569 1	
15.7	Disturbing a Reaction at Equilibrium: Le Châtelier's Principle	572	
15.8	The Effect of a Concentration Change on Equilibrium	574	
15.9	The Effect of a Volume Change on Equilibrium	576	
	CHEMISTRY AND HEALTH How a Developing Fetus Gets Oxygen	578	
15.10	The Effect of a Temperature Change on Equilibrium	579	
15.11	The Solubility-Product Constant Using K_{sp} to Determine Molar Solubility 582	581	
15.12	The Path of a Reaction and the Effect of a Catalyst How Activation Energies Affect Reaction Rates Catalysts Lower the Activation Energy 585 Enzymes: Biological Catalysts 586	583 584	
Self-As	sessment Quiz	588	
Key Te	rms	592	
Exercis	es	592	
Answe	rs to Skillbuilder Exercises	600	
Answe	rs to Conceptual Checkpoints	601	

Oxidation and Reduction

16.1	The End of the Internal Combustion Engine?	603
16.2	Oxidation and Reduction: Some Definitions	604
16.3	Oxidation States: Electron Bookkeeping	607
	EVERYDAY CHEMISTRY The Bleaching of Hair	609
16.4	Balancing Redox Equations	610
	CHEMISTRY IN THE ENVIRONMENT Photosynthesis and Respiration: Energy for Life	615
16.5	The Activity Series: Predicting Spontaneous Redox Reactions The Activity Series of Metals 616 Predicting Whether a Metal Will Dissolve in Acid 618 Batteries: Using Chemistry to	615
10.0	Generate Electricity The Voltaic Cell 619 Dry-Cell Batteries 621 Lead–Acid Storage Batteries 622 Fuel Cells 622	619
16.7	Electrolysis: Using Electricity to Do Chemistry	623
16.8	Corrosion: Undesirable Redox Reactions	624
	Breathalyzer	625

Self-Assessment Quiz	626
Key Terms	629
Exercises	630
Answers to Skillbuilder Exercises	637
Answers to Conceptual Checkpoints	637

Radioactivity and Nuclear Chemistry

17.1	Diagnosing Appendicitis	639
17.2	The Discovery of Radioactivity	640
17.3	Types of Radioactivity: Alpha, Beta,	
	and Gamma Decay	641
	Alpha (α) Radiation 642	
	Beta (β) Radiation 644	
	Gamma (γ) Radiation 645 Positron Emission 646	
17.4	Detecting Radioactivity	648
17.4		649
17.5	Natural Radioactivity and Half-Life Half-Life 649	649
	CHEMISTRY AND HEALTH Environmental Radon A Natural Radioactive Decay Series 651	651
17.6	Radiocarbon Dating: Using Radioactivity	
	to Measure the Age of Fossils and Other	
	Artifacts	652
	CHEMISTRY IN THE MEDIA The Shroud of Turin	653
17.7	The Discovery of Fission and the	
	Atomic Bomb	654
17.8	Nuclear Power: Using Fission to	
	Generate Electricity	656
17.9	Nuclear Fusion: The Power of the Sun	658
17.10	The Effects of Radiation on Life	658
	Acute Radiation Damage 658 Increased Cancer Risk 659	
	Genetic Defects 659	
	Measuring Radiation Exposure 659	
17.11	Radioactivity in Medicine	659
	Isotope Scanning 659	
	Radiotherapy 660	661
Self-As	Self-Assessment Quiz	
Key Terms		664 664
	Exercises	
Answers to Skillbuilder Exercises		669
Answers to Conceptual Checkpoints		669

Organic Chemistry

18.1	What Do I Smell?	671
18.2	Vitalism: The Difference between	
	Organic and Inorganic	672
18.3	Carbon: A Versatile Atom	673
	CHEMISTRY IN THE MEDIA The Origin of Life	674

18.4	Hydrocarbons: Compounds Containing	
	Only Carbon and Hydrogen	675
18.5	Alkanes: Saturated Hydrocarbons	676
	CHEMISTRY IN THE MEDIA Environmental	
	Problems Associated with Hydrocarbon Combustion	677
18.6	Isomers: Same Formula, Different Structure	681
18.7	Naming Alkanes	682
18.8	Alkenes and Alkynes	685
10.0	About Alkenes and Alkynes 685 Naming Alkenes and Alkynes 687	005
18.9	Hydrocarbon Reactions	688
	Alkane Substitution Reactions 689 Alkene and Alkyne Addition Reactions 689	
18.10	Aromatic Hydrocarbons Naming Aromatic Hydrocarbons 691	690
18.11	Functional Groups	693
18.12	Alcohols	694
	Naming Alcohols 694 About Alcohols 695	
18 13	Ethers	695
10.15	Naming Ethers 695	055
	About Ethers 696	
18.14	Aldehydes and Ketones	696
	Naming Aldehydes and Ketones 696 About Aldehydes and Ketones 697	
18 15	Carboxylic Acids and Esters	698
10.15	Naming Carboxylic Acids and Esters 698	050
	About Carboxylic Acids and Esters 698	
18.16	Amines	700
18.17	Polymers	701
	EVERYDAY CHEMISTRY Kevlar: Stronger	702
Solf Ac	Than Steel sessment Quiz	703 704
Key Tei		704
-	Exercises	
Answe	Answers to Skillbuilder Exercises	
Answers to Conceptual Checkpoints		721

Biochemistry

19.1	The Human Genome Project	723
19.2	The Cell and Its Main Chemical Components	724
19.3	Carbohydrates: Sugar, Starch, and Fiber Monosaccharides 725 Disaccharides 726 Polysaccharides 727	724
19.4	Lipids Fatty Acids 729 Fats and Oils 730 Other Lipids 732	729
	CHEMISTRY AND HEALTH Dietary Fats	734
19.5	Proteins	735
19.6	Protein Structure Primary Structure 740	739

	Secondary Structure 740	
	EVERYDAY CHEMISTRY Why Straight Hair Gets Longer When It Is Wet Tertiary Structure 742 Quaternary Structure 743	742
19.7	Nucleic Acids: Molecular Blueprints	744
19.8	DNA Structure, DNA Replication, and Protein Synthesis DNA Structure 747 DNA Replication 748 Protein Synthesis 749 CHEMISTRY AND HEALTH Drugs for Diabetes	746 751
Self-A	ssessment Quiz	751
Key Te	erms	754
Exerci	ses	754
Answe	ers to Skillbuilder Exercises	762
Answe	ers to Conceptual Checkpoints	762

Appendix: Mathematics Review	MR-1
Answers to Odd-Numbered Exercises	A-1
Glossary	G-1
Credits	C-1
Index	I-1

Three-Column Problem-Solving Strategies

How to: Solve Unit Conversion Problems	60
How to: Solve Numerical Problems	71
How to: Write Formulas for Ionic Compounds	176
How to: Obtain an Empirical Formula from Experimental Data	222
How to: Write Balanced Chemical Equations	247
How to: Write Equations for Precipitation Reactions	255
How to: Write Lewis Structures for Covalent Compounds	365
How to: Predict Geometry Using VSEPR Theory	373
How to: Balance Redox Equations Using the Half-Reaction Method	611
How to: Name Alkanes	683

Interactive Media Contents

Key Concept Videos

1.1	Welcome to the Molecular World	29
2.3	Units and Significant Figures	46
2.4	Significant Figures in Calculations	51
2.6	Converting between Units	57
3.3	Classifying Matter	94
3.4	Energy and Chemical and Physical Change	106
3.11	Heat Capacity	110
4.4	Subatomic Particles and Isotope Symbols	135
4.6	The Periodic Table and the Periodic Law	140
4.9	Atomic Mass	150
5.3	Chemical Formulas	170
5.7	Naming Ionic Compounds	178
5.8	Naming Molecular Compounds	183
6.3	The Mole Concept	205
6.5	Chemical Formulas as Conversion Factors	213
6.8	Calculating Empirical Formulas for	
	Compounds	220
7.3	Writing and Balancing Chemical	
	Equations	245
7.5	Types of Aqueous Solutions and Solubility	250
7.6	Precipitation Reactions	253
8.2	Reaction Stoichiometry	284
8.5	Limiting Reactant, Theoretical Yield,	
	and Percent Yield	291
8.7	Enthalpy	299
9.2	Light and the Electromagnetic Spectrum	320

Key Concept Interactives

2.6	Unit Conversion	57
4.8	Isotopes and Atomic Mass	147
5.6	Nomenclature	178
6.8	Determining a Chemical Formula	
	from Experimental Data	220
7.4	Balancing Chemical Equations	247
8.5	Stoichiometry, Limiting Reactant,	
	Excess Reactant, and Theoretical Yield	291
9.7	Electron Configurations from the	
	Periodic Table	336

9	9.6	Quantum Mechanical Orbitals and	
		Electron Configurations	329
9	9.7	Writing an Electron Configuration Based on	
		an Element's Position on the Periodic Table	336
10).2	The Lewis Model for Chemical Bonding	360
10).5	Writing Lewis Structures for Covalent	
		Compounds	364
10).6	Resonance and Formal Charge	368
10).7	Predicting the Shapes of Molecules	370
11	1.4	Simple Gas Laws and the Ideal Gas Law	399
11	.9	Mixtures of Gases	418
11.	10	Gas Reaction Stoichiometry	422
12	2.4	Evaporation and Condensation	447
12	2.5	Melting, Freezing, and Sublimation	452
12	2.6	Intermolecular Forces	456
13	3.2	Solutions and Solubility	481
13	8.5	Solution Concentration	486
13	8.9	Colligative Properties	497
14	1.4	Definitions of Acids and Bases	523
14	1.9	The pH Scale	538
14.	10	Buffers	542
15	5.3	Equilibrium and the Equilibrium	
		Constant	563
15	5.7	Le Châtelier's Principle	572
16	5.3	Oxidation States and Redox Reactions	607
17	7.3	Types of Radioactivity	641

10.5	Drawing Lewis Structures	364
12.6	Intermolecular Forces	456
15.3	Dynamic Equilibrium and the	
	Equilibrium Constant	563
15.7	Le Châtelier's Principle	573
17.3	Types of Radioactivity	641
18.4	Alkanes, Alkenes, and Alkynes	675
18.11	Functional Groups	693
19.5	Proteins and Amino Acids	735

Interactive Worked Examples

2.4	Determining the Number of	
	Significant Figures in a Number	49
2.5	Significant Figures in Multiplication	
	and Division	51
2.6	Significant Figures in Addition and	
	Subtraction	53
2.8	Unit Conversion	60
2.10	Solving Multistep Unit Conversion	
	Problems	62
2.14	Solving Multistep Conversion Problems	
	Involving Units Raised to a Power	67
2.16	Density as a Conversion Factor	70
3.5	Conversion of Energy Units	104
3.6	Exothermic and Endothermic Processes	106
3.9	Converting between Fahrenheit and	
	Kelvin Temperature Scales	109
3.10	Relating Heat Energy to Temperature	
	Changes	113
3.11	Relating Specific Heat Capacity to	
	Temperature Changes	114
4.2	Classifying Elements as Metals,	
	Nonmetals, or Metalloids	142
4.4	Determining Ion Charge from Numbers	
	of Protons and Electrons	145
4.5	Determining the Number of Protons	
	and Electrons in an Ion	146
4.8	Numbers of Protons and Neutrons	
	from Isotope Symbols	150
4.9	Calculating Atomic Mass	152
5.5	Write Formulas for Ionic Compounds	176
5.7	Writing Formulas for Ionic Compounds	
	Containing Polyatomic Ions	177
5.14	Nomenclature Using the Nomenclature	
	Flowchart	187
5.15	Calculating Formula Mass	188
6.1	Converting between Moles and	
	Number of Atoms	206
6.2	The Mole Concept—Converting between	
	Grams and Moles	208
6.3	The Mole Concept—Converting between	
	Grams and Number of Atoms	209
6.5	The Mole Concept—Converting between	
	Mass of a Compound and Number of	242
e -	Molecules	212
6.7	Chemical Formulas as Conversion	
	Factors—Converting between Grams	
	of a Compound and Grams of a Constituent Element	216
6.0		
6.9	Mass Percent Composition	219

6.11	Obtain an Empirical Formula	
	from Experimental Data	222
7.2	Write Balanced Chemical Equations	247
7.6	Determining Whether a Compound	
	Is Soluble	252
7.7	Write Equations for Precipitation	
	Reactions	255
7.11	Writing Equations for Acid–Base	
	Reactions	259
7.12	Writing Equations for Gas-Evolution	
	Reactions	260
8.2	Mass-to-Mass Conversions	288
8.4	Limiting Reactant and Theoretical	
	Yield from Initial Moles of Reactants	293
8.5	Finding Limiting Reactant and	
	Theoretical Yield	296
8.7	Stoichiometry Involving $\Delta H_{ m rxn}$	301
9.2	Electron Configurations	335
9.3	Writing Orbital Diagrams	335
9.5	Writing Electron Configurations	
	from the Periodic Table	339
9.6	Atomic Size	342
9.7	Ionization Energy	345
9.8	Metallic Character	346
10.4	Write Lewis Structures for	
	Covalent Compounds	365
10.6	Writing Lewis Structures for	
	Polyatomic Ions	366
10.7	Writing Resonance Structures	369
10.8	Predict Geometry Using VSEPR Theory	373
10.11	Determining Whether a	
	Molecule Is Polar	378
11.2	Boyle's Law	403
11.3	Charles's Law	407
11.4	The Combined Gas Law	409
11.5	Avogadro's Law	411
11.6	The Ideal Gas Law	414
11.8	Molar Mass, the Ideal Gas Law, and	
	Mass Measurement	417
11.11	Gases in Chemical Reactions	424
12.1	Using the Heat of Vaporization in	
	Calculations	451
12.2	Using the Heat of Fusion in Calculations	454
12.4	Dipole–Dipole Forces	458
12.5	Hydrogen Bonding	460
13.1	Calculating Mass Percent	487
13.2	Using Mass Percent in Calculations	488
13.3	Calculating Molarity	490

13.4	Using Molarity in Calculations	491	1
13.7	Solution Stoichiometry	496	
13.9	Freezing Point Depression	499	1
13.10	Boiling Point Elevation	500	
14.1	Identifying Brønsted–Lowry Acids		1
	and Bases and Their Conjugates	525	1
14.4	Acid-Base Titration	530	
14.8	Calculating pH from $[H_3O^+]$	539	1
15.1	Writing Equilibrium Constant		
	Expressions for Chemical Reactions	566	1
15.3	Calculating Equilibrium Constants	570	1
15.4	Using Equilibrium Constants		
	in Calculations	571	

15.7	The Effect of a Temperature	500
	Change on Equilibrium	580
15.9	Calculating Molar Solubility	
	from K _{sp}	583
16.3	Assigning Oxidation States	608
16.4	Using Oxidation States to Identify	
	Oxidation and Reduction	610
16.6	Balance Redox Equations Using the	
	Half-Reaction Method	611
16.7	Balancing Redox Reactions	613
17.1	Writing Nuclear Equations for	
	Alpha (α) Decay	643

 HAPOДHЫЙ

 Nodege

 POHT

 https://pobeda.onf.ru/

This book is for *you*, and every text feature is meant to help you learn and succeed in your chemistry course. I wrote this book with two main goals for you in mind: to see chemistry as you never have before and to develop the problem-solving skills you need to succeed in chemistry.

I want you to experience chemistry in a new way. I have written each chapter to show you that chemistry is not just something that happens in a laboratory; chemistry surrounds you at every moment. Several outstanding artists have helped me to develop photographs and art that will help you visualize the molecular world. From the opening example to the closing chapter, you will *see* chemistry. My hope is that when you finish this course, you will think differently about your world because you understand the molecular interactions that underlie everything around you.

My second goal is for you to develop problem-solving skills. No one succeeds in chemistry—or in life, really—without the ability to solve problems. I can't give you a one-size-fits-all formula for problem solving, but I can and do give you strategies that will help you develop the *chemical intuition* you need to understand chemical reasoning.

Look for several recurring features throughout this book designed to help you master problem solving. The most important ones are: (1) a four-step process (Sort, Strategize, Solve, and Check) designed to help you learn how to develop a problem-solving approach; (2) the solution map, a visual aid that helps you navigate your way through problems; (3) two-column Examples, in which the left column explains in clear and simple language the purpose of each step of the solution shown in the right column; and (4) three-column Examples, which describe a problem-solving procedure while demonstrating how it is applied to two different Examples. In addition, the For More Practice feature at the end of each worked Example directs you to the end-of-chapter Problems that provide more opportunity to practice the skill(s) covered in each Example. In addition, Interactive Worked Examples are digital versions of select worked Examples from the text that help you break down problems using the book's "Sort, Strategize, Solve, and Check" technique.

Recent research has demonstrated that you will do better on your exams if you take a multiple-choice pre-exam before your actual exam. At the end of each chapter, you will find a Self-Assessment Quiz to help you check your understanding of the material in that chapter. You can string these together to make a pre-exam. For example, if your exam covers Chapters 5–7, complete the Self-Assessment Quizzes for those chapters as part of your preparation for the exam. The questions you miss on the quiz will reveal the areas you need to spend the most time studying. Studies show that if you do this, you will do better on the actual exam.

Lastly, I hope this book leaves you with the knowledge that chemistry is *not* reserved only for those with some superhuman intelligence level. With the right amount of effort and some clear guidance, anyone can master chemistry, including you.

Sincerely,

Nivaldo J. Tro nivatro@gmail.com I thank all of you who have used any of the first six editions of *Introductory Chemistry*—you have made this book the best-selling book in its market, and for that I am extremely grateful. The preparation of the seventh edition has enabled me to continue to refine the book to meet its fundamental purpose: teaching chemical skills in the context of relevance.

Introductory Chemistry is designed for a one-semester, college-level, introductory or preparatory chemistry course. Students taking this course need to develop problem-solving skills—but they also must see *why* these skills are important to them and to their world. *Introductory Chemistry* extends chemistry from the laboratory to the student's world. It motivates students to learn chemistry by demonstrating the role it plays in their daily lives.

This is a visual book. Wherever possible, I use images to help communicate the subject. In developing chemical principles, for example, I worked with several artists to develop multipart images that show the connection between everyday processes visible to the eye and the molecular interactions responsible for those processes. This art has been further refined and improved in the seventh edition, making the visual impact sharper and more targeted to student learning. For example, many images now include blue annotations that represent the author voice. These annotations put the narrative closest to its point of relevance instead of being lost in the figure caption. My intent is to create an art program that teaches and presents complex information clearly and concisely. Many of the illustrations showing molecular depictions of a real-world object or process have three parts: macroscopic (what we can see with our eyes); molecular and atomic (space-filling models that depict what the molecules and atoms are doing); and symbolic (how chemists represent the molecular and atomic world). Students can begin to see the connections between the macroscopic world, the molecular world, and the representation of the molecular world with symbols and formulas.

The problem-solving pedagogy employs four steps as it has done in the previous six editions: Sort, Strategize, Solve, and Check. This four-step procedure guides students as they learn chemical problem solving. Students will also encounter extensive flowcharts throughout the book, allowing them to better visualize the organization of chemical ideas and concepts.

Throughout the worked Examples in this book, I use a *two-* or *three-column* layout in which students learn a general procedure for solving problems of a particular type as they see this procedure applied to one or two worked Examples. In this format, the *explanation* of how to solve a problem is placed directly beside the actual steps in the *solution* of the problem. Many of you have told me that you use a similar technique in lecture and office hours. Since students have specifically asked for connections between worked Examples and end-of-chapter Problems, I include a For More Practice feature at the end of each worked Example that lists the end-of-chapter review Examples and end-of-chapter Problems that provide additional opportunities to practice the skill(s) covered in the example. Also in this edition, we have 78 Interactive Worked Examples, which can be accessed in the eText or through MasteringTM Chemistry.

A successful feature of previous editions is the Conceptual Checkpoints, a series of short questions that students can use to test their mastery of key concepts as they read through a chapter. For this edition, all Conceptual Checkpoints are embedded in the eText. Emphasizing understanding rather than calculation, they are designed to encourage active learning even while reading.

In my own teaching, I have been influenced by two studies. The first one is a mega analysis of the effect of active learning on student learning in STEM disciplines.¹ In this study, Freeman and his coworkers convincingly demonstrate that students learn better when they are active in the process. The second study focuses on the effect of multiple-choice pretests on student exam performance.² Here, Pyburn and his coworkers show that students who take a multiple-choice pretest do better on exams than those who do not. Even more interesting, the enhancement is greater for lower performing students. In my courses, I have implemented both active learning and multiple-choice pretesting with good results. In my books, I have developed tools to allow you to incorporate these techniques as well.

To help you with active learning, I now have 45 Key Concept Videos that accompany this book. These three- to five-minute videos each introduce a key concept from the chapter. They are themselves interactive because every video has an embedded question posed to the student to test understanding. In addition, there are now 78 Interactive Worked Example videos in the media package. This means that you now have a library of 123 interactive videos to enhance your course. In addition, I have created new digital content called Key Concept Interactives described in more detail below in the section entitled "New to This Edition."

In my courses, I use these videos and interactives in conjunction with the book to implement a *before*, *during*, *after* strategy for my students. My goal is simple: *Engage students in active learning before class*, *during class*, *and after class*. To that end, I assign a video or interactive *before* most class sessions. All videos and interactives are embedded in the eText, allowing students to review and test their understanding in real time. The video or interactive introduces students to a concept or problem that I will cover in the lecture. *During* class, I expand on the concept or problem using *Learning Catalytics*TM to question my students. Instead of simply passively listening to a lecture, they are interacting with the concepts through questions that I pose. Sometimes I ask my students to answer individually, other times in pairs or even groups. This approach has changed my classroom. Students and process and interact. Finally, *after* class, I give them another assignment, usually a short follow-up question, problem, or video. At this point, they must apply what they have learned to solve a problem.

To help you with multiple-choice pretesting, each chapter contains a Self-Assessment Quiz, which is also embedded in the eText. These quizzes are designed so that students can test themselves on the core concepts and skills of each chapter. I encourage my students to use these quizzes as they prepare for exams. For example, if my exam covers Chapters 5–8, I assign the quizzes for those chapters for credit (you can do this in MasteringChemistry). Students then get a pretest on the core material that will be on the exam.

My goal with this edition is to continue to help you make learning a more active (rather than passive) process for your students. I hope the tools that I have provided here continue to aid you in teaching your students better and more effectively. Please feel free to email me with any questions or comments you might have. I look forward to hearing from you as you use this book in your course.

Sincerely,

Nivaldo J. Tro nivatro@gmail.com

¹ Freeman, Scott; Eddy, Sarah L.; McDonough, Miles; Smith, Michelle K.; Okoroafor, Nnadozie; Jordt, Hannah; and Wenderoth, Mary Pat. Active learning increases student performance in science, engineering, and mathematics, 2014, *Proc. Natl. Acad. Sci.*

² Pyburn, Daniel T.; Pazicni, Samuel; Benassi, Victor A.; and Tappin, Elizabeth M. The testing effect: An intervention on behalf of low-skilled comprehenders in general chemistry, J. Chem. Educ., 2014, 91 (12), pp. 2045–2057.

Teaching Principles

The development of basic chemical principles—such as those of atomic structure, chemical bonding, chemical reactions, and the gas laws—is one of the main goals of this text. Students must acquire a firm grasp of these principles in order to succeed in the general chemistry sequence or the chemistry courses that support the allied health curriculum. To that end, the book integrates qualitative and quantitative material and proceeds from concrete concepts to more abstract ones.

Organization of the Text

The main divergence in topic ordering among instructors teaching introductory and preparatory chemistry courses is the placement of electronic structure and chemical bonding. Should these topics come early, at the point where models for the atom are being discussed? Or should they come later, after the student has been exposed to chemical compounds and chemical reactions? Early placement gives students a theoretical framework within which they can understand compounds and reactions. However, it also presents students with abstract models before they understand why they are necessary. I have chosen a later placement; nonetheless, I know that every course is unique and that each instructor chooses to cover topics in his or her own way. Consequently, I have written each chapter for maximum flexibility in topic ordering.

Acknowledgments

This book has been a group effort, and I am grateful for all of those who helped me. First and foremost, I would like to thank my editors on this edition, Jessica Moro and Elizabeth Ellsworth Bell. I have known and worked with both of them for many years and in various roles, and am grateful to have them as my editors. I am also deeply grateful to Edward Dodd, my development editor. Ed is an author's dream editor. He is thorough, detail-oriented, creative, and incredibly organized. However, Ed is also gracious, generous, and a joy to work with. Thanks, Ed, for your unending efforts on this revision. Thanks also to my content producer Beth Sweeten. Beth has managed the many details and moving parts of producing this book with care and precision. I appreciate her steady hand, attention to detail, and hard work. Thanks also to my media developer Jackie Jacob. Jackie and I have been working together for many years to produce innovative media pieces that are pedagogically sound and easy to use. She is simply the best in the business, and I am lucky to get to work with her. I am also grateful to my media editor Chloe Veylit who has helped tremendously with the development of the new Key Concept Videos, Interactive Worked Examples, Key Concept Interactives, and other media elements. Chloe is creative, organized, and a great colleague.

Thanks also to Adam Jaworski, who oversees product management in Science at Pearson. I am grateful to have his wise and steady, yet innovative, hand at the wheel, especially during the many changes that are happening within educational publishing. I am also grateful to Gary Hespeheide for his creativity and hard work in crafting the design of this text. I also thank Francesca Monaco and her coworkers at Straive. I am a picky author and Francesca is endlessly patient and a true professional. I am also greatly indebted to my copy editor, Betty Pessagno, for her dedication and professionalism over many projects.

I am also grateful to those who have supported me personally while working on this book. First on that list is my wife, Ann. Her patience and love for me are beyond description, and without her, this book would never have been written. I am also indebted to my children, Michael, Ali, Kyle, and Kaden, whose smiling faces and love of life always inspire me. I come from a large Cuban family whose closeness and support most people would envy. Thanks to my parents, Nivaldo and Sara; my siblings, Sarita, Mary, and Jorge; my siblings-in-law, Nachy, Karen, and John; and my nephews and nieces, Germain, Danny, Lisette, Sara, and Kenny. These are the people with whom I celebrate life.

I am especially grateful to Kyle Tro, who put in many hours proofreading changes in the manuscript, working problems, and organizing appendices. Kyle, you are an amazing person—it is my privilege to have you work with me on this project.

Lastly, I am indebted to the many reviewers, listed next, whose ideas are found throughout this book. They have corrected me, inspired me, and sharpened my thinking on how best to teach this subject we call chemistry. I deeply appreciate their commitment to this project.

Reviewers of the 7th Edition

Lara Baxley Cuesta College David Boyajian Palomar College Marissa Cominotti University of North Carolina, Charlotte Jean Dupon Coastline Community College Michael Ferguson University of Hawaii, Maui College

- Paul Haberstroh Mohave Community College Stephanie Katz Linkmeyer Villanova University Roy Kennedy Massachusetts Bay Community College Andrea Leonard University of Louisiana, Lafayette Dalila Paredes Clark College
- Julie Senecoff Manor College Mary Snow Setzer University of Alabama, Huntsville Steven Tait Indiana University, Bloomington

Focus Group Participants

David Baker Delta College Marissa Cominotti University of North Carolina, Charlotte Sarah Edwards

Western Kentucky University

Michael Felty Trinity Valley Community College

Lee Hoffman Drexel University

Roy Kennedy Massachusetts Bay Community College Ronald Kirkpatrick Ivy Tech Community College Diana Leung University of Alabama Peter Nassiff Massachusetts Bay Community College Michael O'Donnell Blue Ridge Community and Technical College Michael Rennekamp Columbus State Community College Gerald Roy Indian River State College Steven Schultz Biola University

Mary Snow Setzer University of Alabama, Huntsville

Neeta Sharma Solano Community College

Crystal Sims University of Arkansas, Cossatot Community College Sammer Tekarli University of North Texas, Denton

Reviewers of the 6th Edition

Premilla Arasasingham El Camino College Crystal Bendenbaugh Southeastern University Charles Carraher Florida Atlantic University Cassidy Dobson St. Cloud University

David Futoma Roger Williams University Galen George Santa Rosa Junior College Marcia Gillette Indiana University Kokomo Ganna Lyubartseva Southern Arkansas University Helen Motokane El Camino College David Rodgers North Central Michigan College Mu Zheng Tennessee State University

6th Edition Accuracy Reviewers

Kelly Befus Anoka-Ramsey Community College Katherine G. Stevens Utrecht University Stevenson Flemer University of Vermont Lance Lund Anoka-Ramsey Community College Tanea Reed Eastern Kentucky University Jennifer Zabzydar Palomar College

Acknowledgments for the Seventh Edition in SI Units

Pearson would like to acknowledge and thank the following people for their contributions.

Contributor

Katherine G. Stevens Utrecht University

Reviewers

Kenneth Ozoemena University of the Witwatersrand, Johannesburg

Katherine G. Stevens *Utrecht University*

Yin Yin Teo Universiti Malaya

New to This Edition

The book has been extensively revised and contains more small changes than can be detailed here. The most significant changes to the book and its supplements are listed below:

New Key Concept Interactives

15 new *Key Concept Interactives (KCIs)* have been added to the eTextbook and are assignable in Mastering Chemistry. Each interactive guides a student through a key topic as they navigate through a series of interactive screens. As they work through the KCI, they are presented with questions that must be answered to progress. Wrong answers result in feedback to guide them toward success.

New Interactive Videos

33 new *Key Concept Videos* (*KCVs*) and 39 new *Interactive Worked Examples* (*IWEs*) have been added to the media package that accompanies the book. All videos are available within the eTextbook and are assignable in Mastering Chemistry. *The video library now contains over 120 interactive videos*. These tools are designed to help professors engage their students in active learning.

New and Revised End-of-Chapter Problems

48 New End-of-Chapter questions have been added throughout the book, and 83 have been revised. Many new End-of-Chapter questions involve the interpretation of graphs and data. All new End-of-Chapter questions are assignable in Mastering Chemistry.

Updated Conceptual Connections

The Conceptual Connections feature within the eTextbook has been updated to allow students to answer the question and receive feedback, written by the author, on their response.

Predict

This feature asks students to predict the outcome of the topic they are about to read. After the student reads the section, *Predict Follow-up* confirms whether the student predicted correctly or incorrectly and why. Education research has demonstrated that students learn a topic better if they make a prediction about the topic before learning it (even if the prediction is wrong).

Accessibility

All the art throughout the text has been updated with color contrast and accessibility in mind.

Diversity, Equity, and Inclusion Review

As mentioned previously, the entire book went through a detailed review to ensure the content reflects the rich diversity of our learners and is inclusive of their lived experiences.

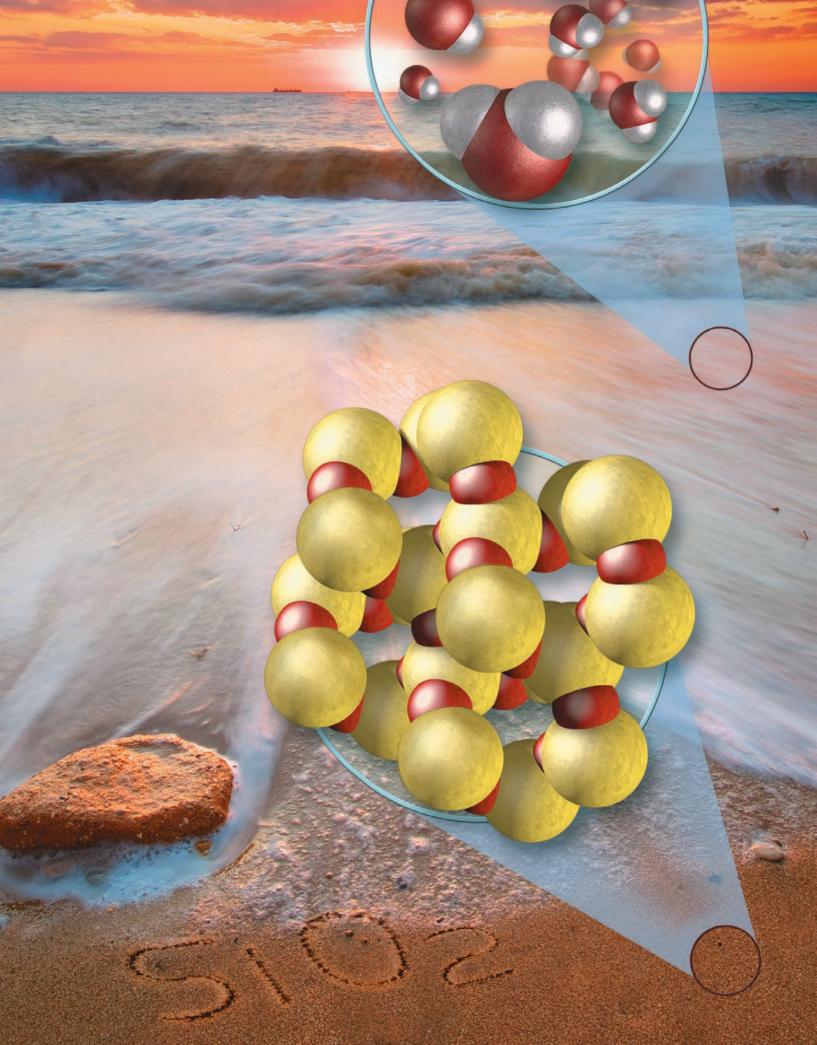
Teaching and Learning Resources

It is increasingly true today that as valuable as a good textbook is, it is still only one element of a comprehensive learning package. The teaching and learning package that accompanies *Introductory Chemistry*, 7th Edition in SI Units is the most comprehensive and integrated on the market. We have made every effort to provide high-quality instructor resources that will save you preparation time and will enhance the time you spend in the classroom.

Mastering Chemistry

Mastering Chemistry is the most effective and widely used online homework, tutorial, and assessment system for the sciences. It delivers self-paced tutorials that focus on your course objectives, provides individualized coaching, and responds to each student's progress. The Mastering system helps teachers maximize class time with easy-to assign, customizable, and automatically graded assessments that motivate students to learn.

Mastering Chemistry is a Learning Platform Designed with You in Mind


New resources in Mastering Chemistry are designed to help students learn and provide more effective instruction for teachers.

- A complete eText! More than a PDF, the Pearson eText includes embedded videos, interactive self-assessments, and more—all offline accessible via the Pearson+ app for eText.
- A new Study Area with resources designed to help students master the toughest topics in chemistry.
- Numerous opportunities for students to practice problem solving skills, with feedback right when you need it.
- Teachers can assign hundreds of activities and problems that can be tailored to specific instructional goals.
- Teachers have access to a library of extensively tested end-of-chapter problems and comprehensive tutorials that incorporate a wide variety of answer types; wrong-answer feedback; and individualized help, including hints or simpler sub-problems.
- Teachers can develop pre-class and post-class diagnostic tests that are automatically graded, and they can create weekly homework assignments and exams of appropriate difficulty, duration, and content coverage.

Instructor Resources

A robust set of instructor resources and multimedia accompanies the text and can be accessed through Mastering Chemistry and the Instructor Resource Center.

- All of the figures, photos, and tables from the text in JPEG and PowerPoint.
- Customizable PowerPoint. Lecture outlines save valuable class prep time.
- An Instructor Solution Manual.
- Test Bank provides a wide variety of customizable questions and is available in Microsoft Word, PDF, and TestGen. formats.
- An Instructor Manual.

1 The Chemical World

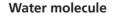
"Imagination is more important than knowledge." —Albert Einstein (1879–1955)

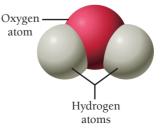
CHAPTER OUTLINE

- 1.1 Sand and Water 29
- 1.2 Chemicals Compose Ordinary Things 30
- 1.3 The Scientific Method: How Chemists Think 31

1.1 Sand and Water

Welcome to the Molecular World This icon indicates that this feature is embedded and interactive in the eTextbook.


▲ Richard Feynman (1918–1988), Nobel Prize–winning physicist and popular professor at California Institute of Technology.


- **1.4** Analyzing and Interpreting Data 34
- **1.5** A Beginning Chemist: How to Succeed 37

I love the beach but hate sand. Sand gets everywhere and even comes home with you. Sand is annoying because sand particles are so small. They stick to your hands, to your feet, and to any food you might be trying to eat for lunch. But the smallness of sand particles pales in comparison to the smallness of the particles that compose them. Sand—like all other kinds of ordinary matter—is composed of atoms. Atoms are unimaginably small. A single sand grain contains more atoms than there are sand grains on the largest of beaches.

The idea that matter is composed of tiny particles is among the greatest discoveries of humankind. Nobel laureate Richard Feynman (1918–1988), in a lecture to first-year physics students at the California Institute of Technology, said that the most important idea in all human knowledge is that *all things are made of atoms*. Why is this idea so important? Because it establishes how we should go about understanding the properties of the things around us. If we want to understand how matter behaves, we must understand how the particles that compose that matter behave.

Atoms, and the molecules they compose, determine how matter behaves—if they were different, matter would be different. The nature of water molecules, for example, determines how water behaves. If water molecules were different—even in a small way—then water would be a different sort of substance. For example, we know that a water molecule is composed of two hydrogen atoms bonded to an oxygen atom with a shape that looks like this:

How would water be different if the shape of the water molecule was different? What if the hydrogen atoms bonded to oxygen to form a linear molecule instead of a bent one?

Hypothetical linear water molecule

The answer to this question is not altogether simple. We don't know exactly how our hypothetical linear water would behave, but we do know it would be much different than ordinary water. For example, linear water would probably have a much lower boiling point than ordinary water. In fact, it may even be a gas (instead of a liquid) at room temperature. Imagine what our world would be like if water was a gas at room temperature. There would be no rivers, no lakes, no oceans, and probably no people (since liquid water is such an important part of what composes us).

There is a direct connection between the world of atoms and molecules and the world we experience every day (**FIGURE 1.1**). Chemists explore this connection. They seek to understand it. A good, simple definition of **chemistry** is *the science that tries to understand how matter behaves by studying how atoms and molecules behave.*

▲ FIGURE 1.1 Virtually everything around you is composed of chemicals.

1.2 Chemicals Compose Ordinary Things

Recognize that chemicals make up virtually everything we come into contact with in our world. (Note: Most of the sections in the chapters in this book link to a Learning Objective (LO), which is listed at the beginning of the section.) We just saw how chemists are interested in substances such as sand and water. But are these substances chemicals? Yes. In fact, everything that we can hold or touch is made of chemicals. When most people think of chemicals, however, they may envision a can of paint thinner in their garage, or recall a headline about a river polluted by industrial waste. But chemicals compose ordinary things, too. Chemicals compose the air we breathe and the water we drink. They compose toothpaste, Tylenol[®], and toilet paper. Chemicals make up virtually everything with which we come into contact. Chemistry explains the properties and behavior of chemicals, in the broadest sense, by helping us understand the molecules that compose them.