

understanding Operating Systems

Ann McIver McHoes

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole of in part. WCN 02-200-203

Understanding Operating Systems Eighth Edition

Ann McIver McHoes Ida M. Flynn

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

CENGAGE Learning

Understanding Operating Systems, Eighth Edition Ann McIver McHoes & Ida M. Flynn

Senior Product Manager: Kathleen McMahon

Product Team Leader: Kristin McNary

Associate Product Manager: Kate Mason

Associate Content Development Manager: Alyssa Pratt

Production Director: Patty Stephan

Senior Content Project Manager: Jennifer Feltri-George

Manufacturing Planner: Julio Esperas

Art Director/Cover Design: Diana Graham

Production Service/Composition: SPi Global

Cover Photos: sumkin/Shutterstock.com

© 2018 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced or distributed in any form or by any means, except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions** Further permissions questions can be emailed to **permissionrequest@cengage.com**

Library of Congress Control Number: 2016962900

ISBN: 978-1-305-67425-7

Cengage Learning

20 Channel Center Street Boston, MA 02210 USA

Unless otherwise noted all items © Cengage Learning.

Cengage Learning is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at **www.cengage.com**.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**

Printed in the United States of America

Print Number: 01 Print Year: 2017

Dedicated to two inspiring colleagues:

Ida Moretti Flynn, award-winning teacher and a wonderful friend; her love for teaching lives on.

Bob Kleinmann, superb editor and soul mate – not in that order.

AMM

Contents

Part One	Operating Systems Concepts	1
Chapter 1	Introducing Operating Systems	3
	What Is an Operating System?	4
	Operating System Software	4
	Main Memory Management	6
	Processor Management	7
	Device Management	8
	File Management	9
	Network Management	9
	User Interface	10
	Cooperation Issues	11
	Cloud Computing	12
	An Evolution of Computing Hardware	13
	Types of Operating Systems	14
	Timeline of Operating Systems Development	17
	1940s	17
	1950s	18
	1960s	19
	1970s	19
	1980s	20
	1990s	20
	2000s	20
	2010s	21
	Role of the Software Designer	22
	Conclusion	23
	Key Terms	23
	To Explore More	25
	Exercises	25

Chapter 2	Early Memory Management Systems	29
	Single-User Contiguous Scheme	30
	Fixed Partitions	31
	Dynamic Partitions	34
	Best-Fit and First-Fit Allocation	36
	Deallocation	41
	Case 1: Joining Two Free Blocks	41
	Case 2: Joining Three Free Blocks	42
	Case 3: Deallocating an Isolated Block	43
	Relocatable Dynamic Partitions	45
	A Machine-Level Look at Relocation	45
	The Essential Role of Registers	47
	The Benefits of Compaction	49
	Conclusion	49
	Key Terms	50
	To Explore More	51
	Exercises	51
Chapter 3	Memory Management Includes Virtual Memory	59
	Paged Memory Allocation	60
	Page Displacement	62
	Pages Versus Page Frames	65
	Demand Paging Memory Allocation	67
	Page Replacement Policies and Concepts	71
	First-In First-Out	72
	Least Recently Used	74
	Clock Replacement Variation	75
	Bit Shifting Variation	75
	The Mechanics of Paging	76
	The Importance of the Working Set	78
	Segmented Memory Allocation	81
	Segmented/Demand Paged Memory Allocation	84
	Virtual Memory	87
	Cache Memory	89
	Conclusion	93
	Key Terms	94
	To Explore More	96
	Exercises	96

Chapter 4	Processor Management	103
	Definitions	104
	About Multi-Core Technologies	106
	Scheduling Submanagers	107
	Process Scheduler	108
	Job and Process States	111
	Thread States	112
	Control Blocks	113
	Control Blocks and Queuing	113
	Scheduling Policies and Algorithms	116
	Scheduling Algorithms	117
	First-Come, First-Served	117
	Shortest Job Next	119
	Priority Scheduling	121
	Shortest Remaining Time	121
	Round Robin	124
	Multiple-Level Queues	126
	Earliest Deadline First	128
	Managing Interrupts	130
	Conclusion	131
	Key Terms	132
	To Explore More	135
	Exercises	135
Chapter 5	Process Synchronization	141
	Consequences of Poor Synchronization	142
	Modeling Deadlocks with Directed Graphs	143
	Several Examples of a Deadlock	144
	Necessary Conditions for Deadlock	150
	Understanding Directed Graphs	151
	Strategies for Handling Deadlocks	153
	Prevention	154
	Avoidance	156
	Detection	158
	Recovery	160
	Starvation	161
	Conclusion	164
	Key Terms	164

	To Explore More	166
	Exercises	166
Chapter 6	Concurrent Processes	171
	What Is Parallel Processing?	172
	Levels of Multiprocessing	174
	Introduction to Multi-Core Processors	174
	Typical Multiprocessing Configurations	175
	Master/Slave Configuration	175
	Loosely Coupled Configuration	176
	Symmetric Configuration	177
	Process Synchronization Software	178
	Test-and-Set	179
	WAIT and SIGNAL	180
	Semaphores	180
	Process Cooperation	183
	Producers and Consumers	183
	Readers and Writers	186
	Concurrent Programming	187
	Amdahl's Law	188
	Order of Operations	189
	Applications of Concurrent Programming	191
	Threads and Concurrent Programming	196
	Two Concurrent Programming Languages	197
	Ada Language	197
	Java	198
	Conclusion	200
	Key Terms	201
	To Explore More	202
	Exercises	202
Chapter 7	Device Management	207
	Types of Devices	208
	Management of I/O Requests	209
	I/O Devices in the Cloud	211
	Sequential Access Storage Media	21
	Direct Access Storage Devices	214
	Magnetic Disk Storage	214
	Access Times	216
	Optical Disc Storage	225

	CD and DVD Technology	227
	Blu-ray Disc Technology	229
	Solid State Storage	229
	Flash Memory Storage	229
	Solid State Drives	230
	Components of the I/O Subsystem	231
	Communication Among Devices	235
	RAID	237
	Level Zero	239
	Level One	241
	Level Two	241
	Level Three	242
	Level Four	243
	Level Five	243
	Level Six	243
	Nested RAID Levels	244
	Conclusion	245
	Key Terms	246
	To Explore More	249
	Exercises	249
Chapter 8	File Management	255

	-))
The File Manager	256
File Management in the Cloud	257
Definitions	257
Interacting with the File Manager	259
Typical Volume Configuration	260
Introducing Subdirectories	262
File-Naming Conventions	263
File Organization	266
Record Format	266
Physical File Organization	267
Physical Storage Allocation	270
Contiguous Storage	271
Noncontiguous Storage	272
Indexed Storage	273
Access Methods	275
Sequential Access	276
Direct Access	276

\sim
(_)
0
7
Ð
+
S

	Levels in a File Management System	277
	Access Control Verification Module	280
	Access Control Matrix	280
	Access Control Lists	281
	Capability Lists	282
	Data Compression	283
	Text Compression	283
	Image and Sound Compression	284
	Conclusion	285
	Key Terms	285
	To Explore More	287
	Exercises	287
Chapter 9	Network Organization Concepts	293
	Definitions and Concepts	294
	Network Topologies	296
	Star	296
	Ring	297
	Bus	298
	Tree	300
	Hybrid	300
	Network Types	301
	Personal Area Network	301
	Local Area Network	302
	Metropolitan Area Network	303
	Wide Area Network	303
	Wireless Local Area Network	303
	Software Design Issues	304
	Addressing Conventions	305
	Routing Strategies	305
	Connection Models	307
	Conflict Resolution	310
	Transport Protocol Standards	314
	OSI Reference Model	314
	TCP/IP Model	318
	Conclusion	320
	Key Terms	321
	To Explore More	322
	Exercises	322
	1270101000	322

Chapter 10	Management of Network Functions	325
	Comparison of Two Networking Systems	326
	NOS Development	329
	Important NOS Features	329
	Major NOS Functions	330
	DO/S Development	331
	Memory Management	332
	Process Management	333
	Device Management	339
	File Management	342
	Network Management	345
	Conclusion	348
	Key Terms	348
	To Explore More	349
	Exercises	349
Chapter 11	Security and Ethics	353
	Role of the Operating System in Security	354
	System Survivability	354
	Levels of Protection	355
	Backup and Recovery	356
	Security Breaches	356
	Unintentional Data Modifications	356
	Intentional System Attacks	357
	System Protection	364
	Antivirus Software	365
	Firewalls	366
	Authentication Protocols	367
	Encryption	369
	Password Management	370
	Password Construction	371
	Typical Password Attacks	372
	Password Alternatives	372
	Password Salting	374
	Social Engineering	374
	Ethics	375
	Conclusion	377
	Key Terms	378
	To Explore More	379
	Exercises	380

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Chapter 12	System Management	383
	Evaluating an Operating System	384
	Cooperation Among Components	384
	Role of Memory Management	385
	Role of Processor Management	385
	Role of Device Management	386
	Role of File Management	388
	Role of Network Management	389
	Measuring System Performance	390
	Measurement Tools	391
	Feedback Loops	393
	Patch Management	395
	Patching Fundamentals	397
	Software to Manage Deployment	399
	Timing the Patch Cycle	399
	System Monitoring	400
	Conclusion	403
	Key Terms	403
	To Explore More	404
	Exercises	404

Part Two Operating Systems in Practice 409

Chapter 13	UNIX Operating Systems	411
	Brief History	412
	The Evolution of UNIX	414
	Design Goals	415
	Memory Management	416
	Process Management	418
	Process Table Versus User Table	419
	Process Synchronization	420
	Device Management	423
	Device Classifications	424
	Device Drivers	425
	File Management	426
	File Naming Conventions	427
	Directory Listings	429
	Data Structures	431
	User Interfaces	432

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

	Script Files	434
	Redirection	434
	Pipes	436
	Filters	437
	Additional Commands	438
	Conclusion	441
	Key Terms	441
	To Explore More	442
	Exercises	442
Chapter 14	Windows Operating Systems	445
	Brief History	446
	Design Goals	447
	Extensibility	447
	Portability	448
	Reliability	449
	Compatibility	450
	Performance	450
	Memory Management	451
	User Mode Features	452
	Virtual Memory Implementation	453
	Processor Management	456
	Device Management	457
	File Management	462
	Network Management	465
	Security Management	466
	Security Concerns	466
	Security Terminology	468
	User Interfaces	469
	Menu-Driven Interface	469
	Command-Line Interface	471
	Conclusion	474
	Key Terms	474
	To Explore More	475
	Exercises	476
Chapter 15	Linux Operating Systems	479
	Brief History	480

Copyright 2018 CMemorynManagementerved. May not be copied, scanned, or duplicated, i484ole or in part. WCN 02-200-203

Contents

Processor Management	487
Process Table Organization	487
Process Synchronization	488
Process Management	488
Device Management	490
Device Classifications	490
Device Drivers	491
Device Classes	492
File Management	494
File Organization	494
Filename Conventions	494
Updates and New Versions	496
User Interfaces	497
System Monitor	498
System Logs	499
File Listings	500
Conclusion	502
Key Terms	502
To Explore More	503
Exercises	503

Chapter 16	Android Operating Systems	507
	Brief History	508
	Design Goals	511
	Memory Management	511
	Processor Management	513
	Manifest, Activity, Task, and Intent	513
	Activity States	514
	Device Management	517
	Screen Requirements	517
	Battery Management	519
	File Management	520
	Security Management	521
	Permissions	521
	Device Access Security	522
	Encryption Options	524
	Bring Your Own Devices	524
	User Interface	525
	Touch Screen Controls	526
	User Interface Elements	526
	0 1 1	520

Copyright 2018 Cengage Learning. All Rights Conclusion hot be copied, scanned, or duplicated, in whole or in part. WCN 02-26-803

529
530
530

Appendix

Appendix A Algorithms	533 539
Appendix B ACM Code of Ethics and	539
Professional Conduct	

Glossary	543
Bibliography	571
Index	577

Preface

Is this book for you? In these pages, we explain a very technical subject in a notso-technical manner, putting the concepts of operating systems into words that many readers can quickly grasp.

For those who are new to the subject, this text demonstrates what operating systems are, what they do, how they do it, how their performance can be evaluated, and how they compare with each other. Throughout the textbook we describe the overall function of many unseen parts of the operating system and lead readers to additional resources where they can find more detailed information, if they so desire.

For readers with more technical backgrounds, this text introduces the subject concisely, describing the complexities of operating systems without going into intricate detail. One might say this book leaves off where other operating system textbooks begin.

To do so, we've made some assumptions about our audiences. First, we assume the readers have some familiarity with computing systems. Second, we assume they have a working knowledge of how to use an operating system and how it interacts with them. We recommend (although we don't require) that readers be familiar with at least one operating system. In the few places where, in previous editions, we used pseudocode to illustrate the inner workings of the operating systems, that code can be found in the Appendix. By moving these algorithms out of individual chapters, we have simplified our explanations of some complex events.

Although it is more difficult to understand how operating systems work than to memorize the details of a single operating system, gaining this understanding is a longer-lasting achievement, paying off in the long run because it allows one to adapt as technology changes—as, inevitably, it does.

Therefore, regardless of the level of expertise that the reader brings to the subject, the purpose of this book is to give computer users a solid background in the basics of operating systems, their functions and goals, and how they interact and interrelate.

Structure and Features

The organization of this book addresses a recurring problem with textbooks about technologies that continue to change—constant advances in evolving subject matter can make textbooks immediately outdated. To address this problem, our material is divided into two parts: first, the concepts, which do not change quickly, and second, the specifics of operating systems, which change dramatically over the course of years and even months. Our goal is to give readers the ability to apply their knowledge year after year, realizing that, although a command, or series of commands, used by one operating system may be different from another, the goals are the same and the functions of competing operating systems are also the same. It is for that reason, that we have structured this book in two parts.

Part One (the first 12 chapters) describes the concepts of operating systems by concentrating on several "managers" in turn, and then describing how these managers work together. In addition, Part One introduces network organization concepts, security, ethics, and system management.

Part Two examines actual operating systems: how they apply the theories presented in Part One and how they compare with each other.

Chapter 1 gives a brief introduction to the subject. The Memory Manager, described in Chapters 2 and 3, is the simplest component of the operating system to explain, and has been historically tied to the advances from one operating system to the next. We explain the role of the Processor (CPU) Manager in Chapters 4, 5, and 6, first discussing simple systems and then expanding the topic to include multiprocessing systems. By the time we reach the Device Manager in Chapter 7 and the File Manager in Chapter 8, readers will have been introduced to many key concepts found in every operating system. Chapters 9 and 10 introduce basic concepts related to networking. Chapters 11 and 12 discuss security, ethics, and system management, including some of the tradeoffs that operating systems designers consider when attempting to satisfy the needs of their user population.

In Part Two we explore four operating systems in the order of their first release: UNIX, Windows, Linux, and Android. Here, each chapter includes a discussion describing how that operating system applies the concepts discussed in Part One. Again, we must stress that this is a general discussion—an in-depth examination of an operating system would require details based on its current standard version, which can't be done in a textbook. We strongly suggest that readers use our discussion as a guide—a base to work from when comparing the advantages and disadvantages of a specific operating system, and supplement our work with current academic research, which is readily available online.

Each chapter includes learning objectives, key terms, research topics, exercises, and a spotlight on industry experts who have left their mark in computer science. For technically oriented readers, the exercises at the end of each chapter include some problems

for advanced students. Please note that these advanced exercises assume knowledge of matters not presented in the book, but they're good for anyone who enjoys a challenge. We expect some readers who are new to the subject will cheerfully pass them by.

The text concludes with several reference aids. Within each chapter, important terms are listed at its conclusion as key terms. The Windows chapter also includes a table that briefly lists all acronyms or abbreviations used in that chapter. An extensive end-of-book Glossary includes brief reader-friendly definitions for hundreds of terms used in these pages; note that this glossary is specific to the way these terms are used in this textbook. The Bibliography can guide the reader to basic research on the subject. Finally, the Appendix features pseudocode algorithms referenced in several chapters, and a section of the ACM Code of Ethics.

In an attempt to bring the concepts closer to home, throughout the book we've added real-life examples to illustrate abstract concepts. However, let no one confuse our conversational style with our considerable respect for the subject matter. The subject of operating systems is a complex one and it cannot be covered completely in these few pages. Therefore, in this textbook we do not attempt to give an in-depth treatise of operating systems theory and applications. This is an overall view.

Not included in this text is a detailed discussion of databases and data structures, except as they are used to resolve process synchronization problems, or the work of specific operating systems. This is because these structures only tangentially relate to operating systems and are frequently the subject of other courses. We suggest that readers begin by learning the basics as presented in the following pages and pursue these complex subjects in their future studies.

Changes to this Edition

This edition has been thoroughly updated and features many improvements over previous editions:

- Renewed emphasis on the role of the talented people who designed and wrote operating systems, as well as their design decisions, which can affect how the resulting system works.
- Added more screenshots from a variety of operating systems, including Macintosh OS (which runs UNIX), Windows, Android phone and tablet, and Linux.
- Expanded our discussions of cloud computing and cloud storage.
- Revised networking discussions to reflect emerging designs and technology.
- Retained an emphasis on student understanding and original thinking in the exercises, rather than on memorization or cut-and-paste facts. This is because our book's answer key is often available online shortly after publication, so in these pages we have routinely asked students to use their own words to explain concepts.

• Expanded cross-references from Part Two to the concepts taught in Part One to help students link specific system features with the concepts discussed in the begin-

ning chapters.

- Added emphasis on available command-mode options in each operating system for readers who want to explore their system more directly, without using the menus.
- Included online resources for more information about many of the highly technical subjects introduced in this text. Please remember that in the field of computer science, online links go bad frequently, but by providing these links to our readers, they will have a good starting place from which they can search for more current info.
- Updated artwork and references to the expanding influence of wireless technology.
- Removed examples in assembly language, which is not widely studied in introductory classes, and replaced them with pseudocode and prose descriptions.

Numerous other changes throughout the text include editorial clarifications, expanded captions, and improved illustrations.

A Note for Instructors

The following supplements are available when this text is used in a classroom setting. All supplements can be downloaded from the Instructor Companion Site. Simply search for this text at sso.cengage.com. An instructor login is required.

Instructor's Manual. The Instructor's Manual that accompanies this textbook includes additional instructional material to assist in class preparation, including Sample Syllabi, Chapter Outlines, Technical Notes, Lecture Notes, Quick Quizzes, Teaching Tips, and Discussion Topics.

Test Bank. Cengage Testing Powered by Cognero is a flexible, online system that allows you to:

- author, edit, and manage test bank content from multiple Cengage solutions;
- create multiple test versions in an instant;
- deliver tests from your LMS, your classroom, or wherever you want.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each chapter. These are included as a teaching aid for classroom presentations, either to make available to students on the network for chapter review, or to be printed for classroom distribution. Instructors can add their own slides for additional topics that they wish to introduce to the class.

Solutions. Selected solutions to Exercises are provided.

Order of Presentation

We have built this text with a modular construction to accommodate several alternative sequences, depending on the instructor's preference.

- For example, the syllabus can follow the chapters as listed from Chapter 1 through Chapter 12 to present the core concepts that all operating systems have in common. Using this path, students will learn about the management of memory, processors, devices, files, and networks, in that order.
- An alternative path might begin with Chapter 1, move next to processor management in Chapters 4 through 6, then to memory management in Chapters 2 and 3, touch on systems security and management in Chapters 11 and 12, and finally move to device and file management in Chapters 7 and 8. Because networking is often the subject of another course, instructors may choose to bypass Chapters 9 and 10, or include them for a more thorough treatment of operating systems.

We hope you find our discussion of ethics helpful in Chapter 11, which is here in response to requests by university adopters of the text who asked us to include this subject, even though it is sometimes the subject of a separate course.

When teaching one or more operating systems from Part Two, keep in mind that we structured each of these four chapters the same way we presented concepts in the first 12 chapters. That is, they discuss the management of memory, processors, files, devices, networks, and systems, in that order, with a special section demonstrating the user interfaces for each operating system. To illustrate the use of graphical user interfaces in UNIX systems, we include screenshots from the Macintosh OS X operating system.

By including the Android operating system, which is specifically designed for use in a mobile environment using phones and tablets, we are able to explore the challenges unique to these computing situations.

Acknowledgments

Our gratitude goes to all of our friends and colleagues who were so generous with their encouragement, advice, and support over the two decades of this publication. Special thanks go to Bob Kleinmann, Eleanor Irwin, and Roger Flynn for their assistance.

As always, thanks to those at Cengage, Brooks/Cole, and PWS Publishing who have made significant contributions to all eight editions of this text, especially Alyssa Pratt, Kallie Swanson, Mike Sugarman, and Mary Thomas Stone.

Preface

And to the many students and instructors who have sent helpful comments and suggestions since publication of our first edition in 1991, we thank you. Please keep them coming.

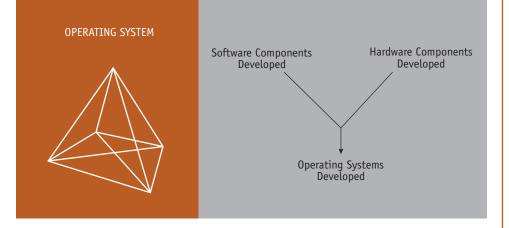
Ann McIver McHoes, mchoesa@duq.edu

Ida Moretti Flynn (1945–2004)

Part One

Operating Systems Concepts

This text explores the core mechanisms of operating systems, which manage a computing system's hardware and software. That includes its memory, processing capability, devices, files, and networks—and how to do all of this in an appropriate and secure fashion. Here, in Part One, we present an overview of an operating system's essentials.


- Chapter 1 introduces the subject of operating systems.
- Chapters 2 and 3 discuss the management of main memory resources.
- Chapters 4 through 6 cover single processor and multiprocessor management.
- Chapter 7 concentrates on managing available devices without conflicts.
- Chapter 8 is devoted to the management of files, including those that hold system instructions as well as your data.
- Chapters 9 and 10 briefly review operating systems for networks.
- Chapter 11 discusses system security.
- Chapter 12 explores system management.

In Part Two (Chapters 13 through 16), we look at four specific operating systems and how they apply the overall concepts presented in the first 12 chapters.

Throughout our discussion of this very technical subject, we try to include definitions of terms that might be unfamiliar, but it isn't always possible to describe a function and define the technical terms while keeping the explanation clear. Therefore, we've put the key terms with definitions at the end of each chapter, as well as in the glossary at the end of the text. Items listed in the Key Terms are shown in **boldface** the first time they are mentioned significantly.

Throughout this book we keep our descriptions and examples as simple as possible to introduce the system's complexities without getting bogged down in technical detail. Therefore, remember that for almost every topic explained in the following pages, there's much more information that's readily available for study. Our goal is to introduce the subject and to encourage our readers to independently pursue topics of special interest. Enjoy.

Chapter 1 Introducing Operating Systems

^{••} I think there is a world market for maybe five computers. ⁹⁹

-Attributed to Thomas J. Watson (1874-1956; chairman of IBM 1949-1956)

Learning Objectives

After completing this chapter, you should be able to describe:

- How operating systems have evolved through the decades
- The basic role of an operating system
- How operating system software manages it subsystems
- The role of computer system hardware on the development of its operating system
- How operations systems are adapted to serve batch, interactive, real-time, hybrid, and embedded systems
- How operating systems designers envision their role and plan their work

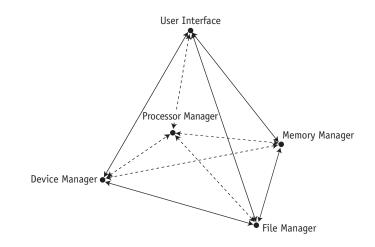
To understand an **operating system** is to begin to understand the workings of an entire computer system, because the operating system software manages each and every piece of hardware and software. In the pages that follow, we explore what operating systems are, how they work, what they do, and why.

This chapter briefly describes the workings of operating systems on the simplest scale. The following chapters explore each component in more depth, and show how its function relates to the other parts of the operating system. In other words, we see how the pieces work together harmoniously to keep the computer system working smoothly.

What Is an Operating System?

A computer system typically consists of software (programs) and hardware (the tangible machine and its electronic components). The operating system is the most important software— it's the portion of the computing system that manages all of the hardware and all of the other software. To be specific, the operating system software controls every file, every device, every section of main memory, and every moment of processing time. It controls who can use the system and how. In short, the operating system is the boss.

Therefore, each time the user sends a command, the operating system must make sure that the command is executed; or, if it's not executed, it must arrange for the user to get a message explaining the error. This doesn't necessarily mean that the operating system executes the command or sends the error message, but it does control the parts of the system that do.

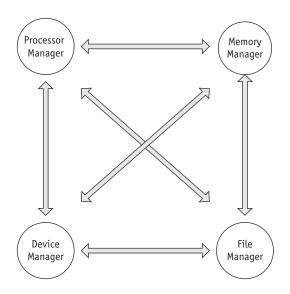

Operating System Software

The pyramid shown in Figure 1.1 is an abstract representation of the operating system in its simplest form, and demonstrates how its major components typically work together.

At the base of the pyramid are the four essential managers of every major operating system: Memory Manager, Processor Manager, Device Manager, and File Manager. These managers, and their interactions, are discussed in detail in Chapters 1 through 8 of this book. Each manager works closely with the other managers as each one performs its unique role. At the top of the pyramid is the User Interface, which allows the user to issue commands to the operating system. Because this component has specific elements, in both form and function, it is often very different from one operating system.

(figure 1.1)

This pyramid represents an operating system on a stand-alone computer unconnected to a network. It shows the four subsystem managers and the User Interface.



Regardless of the size or configuration of the system, the four managers, illustrated in Figure 1.2, must, at a minimum, perform the following tasks while collectively keeping the system working smoothly:

- Monitor the system's resources
- Enforce the policies that determine what component gets what resources, when, and how much
- Allocate the resources when appropriate
- Deallocate the resources when appropriate

(figure 1.2)

Each manager at the base of the pyramid takes responsibility for its own tasks while working harmoniously with every other manager.

Chapter 1 | Introducing Operating Systems

For example, the Memory Manager must keep track of the status of the computer system's main memory space, allocate the correct amount of it to incoming processes, and deallocate that space when appropriate—all while enforcing the policies that were established by the designers of the operating system.

An additional management task, networking, has not always been an integral part of operating systems. Today the vast majority of major operating systems incorporate a **Network Manager**, see Figure 1.3, to coordinate the services required for multiple systems to work cohesively together. For example, the Network Manager must coordinate the workings of the networked resources, which might include shared access to memory space, processors, printers, databases, monitors, applications, and more. This can be a complex balancing act as the number of resources increases, as it often does.

Processes Performance App history Startup Users Details Se	rvices				
Name	7% CPU	✓ 37%Memory	12% Disk	0% Network	
 iolo System Analyzer (32 bit) Service Host: Local System (Network Restricted) (12) Desktop Window Manager 	0% 0.2% 0.3%	99.3 MB 79.7 MB 67.8 MB	0 MB/s 0 MB/s 0 MB/s	0 Mbps 0 Mbps 0 Mbps	
Cortana Runtime Broker	0% 0%	59.6 MB 48.7 MB	0 MB/s 0 MB/s	0 Mbps 0 Mbps	

(figure 1.3)

The Windows 10 Task Manager displays a snapshot of the system's CPU, main memory, disk, and network activity.

Main Memory Management

The Memory Manager (the subject of Chapters 2 and 3) is in charge of main memory, widely known as **RAM** (short for random access memory). The Memory Manager checks the validity of each request for memory space, and if it is a legal request, allocates a portion of memory that isn't already in use. If the memory space becomes fragmented, this manager might use policies established by the operating system's designers to real-locate memory to make more useable space available for other jobs that are waiting. Finally, when the job or process is finished, the Memory Manager deallocates its allotted memory space.

A key feature of RAM chips—the hardware that comprises computer memory—is that they depend on the constant flow of electricity to hold data. If the power fails or is turned off, the contents of RAM is wiped clean. This is one reason why computer system

RAM stands for random access memory and is the computer's main memory. It's sometimes called "primary storage" to distinguish it from "secondary storage," where data is stored on hard drives or other devices.

(figure 1.4)

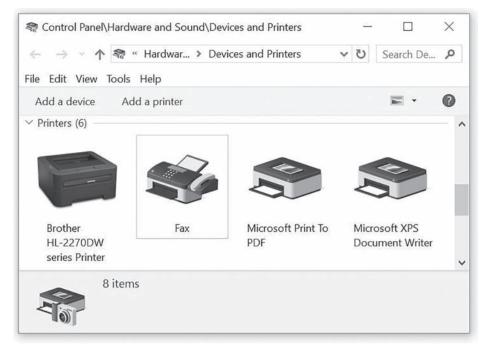
A computer's relatively small ROM chip contains the firmware (unchanging software) that prescribes the system's initialization every time the system's power is turned on.

designers attempt to build elegant shutdown procedures, so that the contents of RAM can be stored on a nonvolatile device, such as a hard drive, before the main memory chips lose power during computer shutdown.

A critical responsibility of the Memory Manager is to protect all of the space in main memory, particularly the space occupied by the operating system itself—it can't allow any part of the operating system to be accidentally or intentionally altered because that would lead to instability or a system crash.

Another kind of memory that's critical when the computer is powered on is read-only memory (often shortened to ROM), shown in Figure 1.4. This ROM chip holds software called **firmware**: the programming code that is used to start the computer and perform other necessary tasks. To put it in simplest form, it describes, in prescribed steps, when and how to load each piece of the operating system after the power is turned on, up to the point that the computer is ready for use. The contents of the ROM chip are nonvolatile, meaning that they are not erased when the power is turned off, unlike the contents of RAM.

Processor Management


The Processor Manager (discussed in Chapters 4 through 6) decides how to allocate the central processing unit (CPU); an important function of the Processor Manager is to keep track of the status of each job, process, thread, and so on. We will discuss all of these in the chapters that follow, but for this overview, let's limit our discussion to a **process** and define it as a program's "instance of execution." A simple example could be a request to solve a mathematical equation: This would be a single job consisting of several processes, with each process performing a part of the overall equation.

The Processor Manager is required to monitor the computer's CPU to see if it's busy executing a process or sitting idle as it waits for some other command to finish execution. Generally, systems are more efficient when their CPUs are kept busy. The Processor Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203 Manager handles each process's transition, from one state of execution to another, as it moves from the starting queue, through the running state, and, finally, to the finish line (where it then tends to the next process). Therefore, this manager can be compared to a traffic controller. When the process is finished, or when the maximum amount of computation time has expired, the Processor Manager reclaims the CPU so it can allocate it to the next waiting process. If the computer has multiple CPUs, as with a multicore system, the Process Manager's responsibilities are greatly complicated.

Device Management

The Device Manager (the subject of Chapter 7) is responsible for connecting with every device that's available on the system, and for choosing the most efficient way to allocate each of these printers, ports, disk drives, and more, based on the device scheduling policies selected by the designers of the operating system.

Good device management requires that this part of the operating system uniquely identify each device, start its operation when appropriate, monitor its progress, and, finally, deallocate the device to make the operating system available to the next waiting process. This isn't as easy as it sounds because of the exceptionally wide range of devices that can be attached to any system, such as the system shown in Figure 1.5.

A flash memory device is an example of secondary storage because it doesn't lose data when its power is turned off. Still, some operating systems allow users to plug in such a device to improve the performance of main memory.

(figure 1.5)

This computer, running the Windows 10 operating system, has device drivers loaded for all of the printing devices shown here. For example, let's say you're adding a printer to your system. There are several kinds of printers commonly available (laser, inkjet, inkless thermal, etc.) and they're made by manufacturers that number in the hundreds or thousands. To complicate things, some devices can be shared, while some can be used by only one user or one job at a time. Designing an operating system to manage such a wide range of printers (as well as monitors, keyboards, pointing devices, disk drives, cameras, scanners, and so on) is a daunting task. To do so, each device has its own software, called a device driver, which contains the detailed instructions required by the operating system to start that device, allocate it to a job, use the device correctly, and deallocate it when it's appropriate.

File Management

The File Manager (described in Chapter 8), keeps track of every file in the system, including data files, program files, utilities, compilers, applications, and so on. By following the access policies determined by the system designers, the File Manager enforces restrictions on who has access to which files. Many operating systems allow authorized individuals to change these permissions and restrictions. The File Manager also controls the range of actions that each user is allowed to perform on the files after they access them. For example, one user might have read-only access to a critical database, while the systems administrator might hold read-and-write access with the authority to create and delete files in the same database. Access control is a key part of good file management and is tightly coupled with system security software.

When the File Manager allocates space on a secondary **storage** device, such as a hard drive, flash drive, archival device, and so on, it must do so knowing the technical requirements of that device. For example, if it needs to store an archival copy of a large file, it needs to know if the device stores it more efficiently as one large block or in several smaller pieces that are linked through an index. This information is also necessary for the file to be correctly retrieved later. Later, if this large file must be modified after it has been stored, the File Manager must be capable of making those modifications as accurately and efficiently as possible.

Network Management

Operating systems with networking capability have a fifth essential manager called the Network Manager (the subject of Chapters 9 and 10) that provides a convenient way for authorized users to share resources. To do so, this manager must take overall responsibility for every aspect of network connectivity, including the requirements of the available devices as well as files, memory space, CPU capacity, transmission connections, and types of encryption (if necessary). Networks with many available resources require management of a vast range of alternative elements, which enormously complicates the tasks required to add network management capabilities.