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PREFACE

The fifth edition of this book differs from the fourth edition in many ways.
There are large numbers of small changes everywhere to bring the material up to
date as operating systems are not standing still. For example, where the previous
edition focused almost exclusively on magnetic hard disks for storage, this time we
give the flash-based Solid State Drives (SSDs) the attention that befits their popu-
larity. The chapter on Windows 8.1 has been replaced entirely by a chapter on the
new Windows 11. We hav e rewritten much of the security chapter, with more
focus on topics that are directly relevant for operating systems (and exciting new
attacks and defenses), while reducing the discussion of cryptography and steganog-
raphy. Here is a chapter-by-chapter rundown of the changes.

• Chapter 1 has been heavily modified and updated in many places, but
with the exception of dropping the description of CD-ROMs and
DVDs in favor of modern storage solutions such as SSDs and persis-
tent memory, no major sections have been added or deleted.

• In Chapter 2, we significantly expanded the discussion of event-driven
servers and included an extensive example with pseudo code. We gav e
priority inversion its own section where we also discussed ways to deal
with the problem. We reordered some of the sections to clarify the dis-
cussion. For instance, we now discuss the readers-writers problem
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immediately after the producer-consumer section and moved the din-
ing philosophers to another chapter, that of deadlocks, entirely. Be-
sides numerous smaller updates, we also dropped some older material,
such as scheduler activations and pop-up threads.

• Chapter 3 now focuses on modern 64-bit architectures and contains
more precise explanations of many aspects of paging and TLBs. For
instance, we describe how operating systems use paging also and how
some operating systems map the kernel into the address spaces of user
processes.

• Chapter 4 changed significantly. We dropped the lengthy descriptions
of CD-ROMs and tapes, and instead added sections about SSD-based
file systems, booting in modern UEFI-based computer systems, and
secure file deletion and disk encryption.

• In Chapter 5, we have more information about SSDs and NVMe, and
explain input devices using a modern USB keyboard instead of the
older PS/2 one of the previous edition. In addition, we clarify the rela-
tion between interrupts, traps, exceptions, and faults.

• As mentioned, we added the dining philosophers example to Chapter
6. Other than that, the chapter is pretty much unchanged. The topic of
deadlocks is fairly stable, with few new results.

• In Chapter 7, we added a section about containers to the existing (and
updated) explanation of hypervisor-based virtualization. The material
on VMware has also been brought up to date.

• Chapter 8 is an updated version of the previous material on multiproc-
essor systems. We added subsections on simultaneous multithreading
and discuss new types of coprocessors, while dropping sections such
as the one on the older IXP network processors and the one on the
(now dead) CORBA middleware. A new section discusses scheduling
for security.

• Chapter 9 has been heavily revised and reorganized, with much more
focus on what is relevant for the operating system and less emphasis
on crypto. We now start the chapter with a discussion of principles for
secure design and their relevance for the operating system structure.
We discuss exciting new hardware developments, such as the Melt-
down and Spectre transient execution vulnerabilities, that have come to
light since the previous edition. In addition, we describe new software
vulnerabilities that are important for the operating system. Finally, we
greatly expanded the description of the ways in which the operating
system can be hardened, with extensive discussion of control flow
integrity, fine-grained ASLR, code signing, access restrictions, and
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attestation. Since there is much ongoing research in this area, new ref-
erences have been added and the research section has been rewritten.

• Chapter 10 has been updated with new dev elopments in Linux and
Android. Android has evolved considerably since the previous edition,
and this chapter covers the current version in detail. This section has
been substantially rewritten.

• Chapter 11 has changed significantly. Where the fourth edition was on
Windows 8.1, we now discuss Windows 11. It is basically a new chap-
ter.

• Chapter 12 is a slightly revised version of the previous edition. This
chapter covers the basic principles of system design, and they hav e not
changed much in the past few years.

• Chapter 13 is a thoroughly updated list of suggested readings. In addi-
tion, the list of references has been updated, with entries to well over
100 new works published after the fourth edition of this book came
out.

• In addition, the sections on research throughout the book have all been
redone from scratch to reflect the latest research in operating systems.
Furthermore, new problems have been added to all the chapters.

Instructor supplements (including the PowerPoint sheets) can be found at
https://www.pearsonhighered.com/cs-resources .

A number of people have been involved in the fifth edition. The material in
Chap. 7 on VMware (in Sec. 7.12) was written by Edouard Bugnion of EPFL in
Lausanne, Switzerland. Ed was one of the founders of the VMware company and
knows this material as well as anyone in the world. We thank him greatly for sup-
plying it to us.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals, up-
dated Chap. 10 from the Fourth Edition, which she also wrote. The Android ma-
terial in Chap. 10 was written by Dianne Hackborn of Google, one of the key
developers of the Android system. Android is the most popular operating system
on smartphones, so we are very grateful to have Dianne help us. Chapter 10 is now
quite long and detailed, but UNIX, Linux, and Android fans can learn a lot from it.

We hav en’t neglected Windows, however. Mehmet Iyigun of Microsoft up-
dated Chap. 11 from the previous edition of the book. This time the chapter covers
Windows 11 in detail. Mehmet has a great deal of knowledge of Windows and
enough vision to tell the difference between places where Microsoft got it right and
where it got it wrong. He was ably assisted by Andrea Allievi, Pedro Justo, Chris
Kleynhans, and Erick Smith. Windows fans are certain to enjoy this chapter.

The book is much better as a result of the work of all these expert contributors.
Again, we would like to thank them for their invaluable help.

https://www.pearsonhighered.com/cs-resources
https://www.pearsonhighered.com/cs-resources
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We were also fortunate to have sev eral reviewers who read the manuscript and
also suggested new end-of-chapter problems. They were Jeremiah Blanchard
(University of Florida), Kate Holdener (St. Louis University), Liting Hu (Virginia
Tech), Jiang-Bo Liu (Bradley University), and Mai Zheng (Iowa State University).
We remain responsible for any remaining errors, of course.

We would also like to thank our editor, Tracy Johnson, for keeping the project
on track and herding all the cats, albeit virtually this time. Erin Sullivan managed
the review process and Carole Snyder handled production.

Finally, last but not least, Barbara, Marvin, and Matilde are still wonderful, as
usual, each in a unique and special way. Aron and Nathan are great kids and
Olivia and Mirte are treasures. And of course, I would like to thank Suzanne for
her love and patience, not to mention all the druiven, kersen, and sinaasappelsap,
as well as other agricultural products. (AST)

As always, I owe a massive thank you to Marieke, Duko, and Jip. Marieke for
just being there and for bearing with me in the countless hours that I was working
on this book, and Duko and Jip for tearing me away from it to play hoops, day and
night! I am also grateful to the neighbors for putting up with our midnight basket-
ball games. (HB)

Andrew S. Tanenbaum
Herbert Bos
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1
INTRODUCTION

A modern computer consists of one or more processors, some amount of main
memory, hard disks or Flash drives, printers, a keyboard, a mouse, a display, net-
work interfaces, and various other input/output devices. All in all, a complex sys-
tem. If ev ery application programmer had to understand how all these things work
in detail, no code would ever get written. Furthermore, managing all these compo-
nents and using them optimally is an exceedingly challenging job. For this reason,
computers are equipped with a layer of software called the operating system,
whose job is to provide user programs with a better, simpler, cleaner, model of the
computer and to handle managing all the resources just mentioned. Operating sys-
tems are the subject of this book.

It is important to realize that smart phones and tablets (like the Apple iPad) are
just computers in a smaller package with a touch screen. They all have operating
systems. In fact, Apple’s iOS is fairly similar to macOS, which runs on Apple’s
desktop and MacBook systems. The smaller form factor and touch screen really
doesn’t change that much about what the operating system does. Android smart-
phones and tablets all run Linux as the true operating system on the bare hardware.
What users perceive as ‘‘Android’’ is simply a layer of software running on top of
Linux. Since macOS (and thus iOS) is derived from Berkeley UNIX and Linux is a
clone of UNIX, by far the most popular operating system in the world is UNIX and
its variants. For this reason, we will pay a lot of attention in this book to UNIX.

Most readers probably have had some experience with an operating system
such as Windows, Linux, FreeBSD, or macOS, but appearances can be deceiving.
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