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Introduction

Welcome to Python Programming for Teens. Whether you’re under 20 or just a teenager at
heart, this book will introduce you to computer programming. You can use it in a class-
room or on your own. The only assumption is that you know how to use a modern com-
puter system with a keyboard, screen, and mouse.

To make your learning experience fun and interesting, you will write programs that draw
pictures on the screen and allow you to interact with them by using the mouse. Along the
way, you will learn the basic principles of program design and problem solving with com-
puters. You will then be able to apply these ideas and techniques to solve problems in
almost any area of study. But most of all, you will experience the joy of building things
that work and look great!

Why Python?
Computer technology and applications have become increasingly more sophisticated over
the past several decades, and so has the computer science curriculum, especially at the
introductory level. Today’s students learn a bit of programming and problem solving
and are then expected to move quickly into topics like software development, complexity
analysis, and data structures that, 20 years ago, were reserved for advanced courses. In
addition, the ascent of object-oriented programming as a dominant method has led
instructors and textbook authors to bring powerful, industrial-strength programming lan-
guages such as C++ and Java into the introductory curriculum. As a result, instead of
experiencing the rewards and excitement of computer programming, beginning students
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often become overwhelmed by the combined tasks of mastering advanced concepts and
learning the syntax of a programming language.

This book uses the Python programming language as a way of making the learning expe-
rience manageable and attractive for students and instructors alike. Python offers the fol-
lowing pedagogical benefits:

n Python has simple, conventional syntax. Its statements are close to those of ordinary
English, and its expressions use the conventional notation found in algebra. Thus,
beginners can spend less time learning the syntax of a programming language and
more time learning to solve interesting problems.

n Python has safe semantics. Any expression or statement whose meaning violates the
definition of the language produces an error message.

n Python scales well. It is easy for beginners to write simple programs. Python also
includes all the advanced features of a modern programming language, such as
support for data structures and object-oriented software development, for use when
they become necessary.

n Python is highly interactive. Expressions and statements can be entered at an
interpreter’s prompts to allow the programmer to try out experimental code and
receive immediate feedback. Longer code segments can then be composed and saved
in script files to be loaded and run as modules or standalone applications.

n Python is general purpose. In today’s context, this means that the language includes
resources for contemporary applications, including media computing and networks.

n Python is free and is in widespread use in the industry. Students can download it to
run on a variety of devices. There is a large Python user community, and expertise in
Python programming has great resume value.

To summarize these benefits, Python is a comfortable and flexible vehicle for expressing
ideas about computation, both for beginners and experts alike. If students learn these
ideas well in their first experience with programming, they should have no problems mak-
ing a quick transition to other languages and technologies needed to achieve their educa-
tional or career objectives. Most importantly, beginners will spend less time staring at a
computer screen and more time thinking about interesting problems to solve.
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Organization of the Book
The approach in this book is easygoing, with each new concept introduced only when you
need it.

Chapter 1, “Getting Started with Python,” advises you how to download, install, and start
the Python programming software used in this book. You try out simple program com-
mands and become acquainted with the basic features of the Python language that you
will use throughout the book.

Chapter 2, “Getting Started with Turtle Graphics,” introduces the basic commands for
turtle graphics. You learn to draw pictures with a set of simple commands. Along the
way, you discover a thing or two about colors and two-dimensional geometry.

Chapter 3, “Control Structures: Sequencing, Iteration, and Selection,” covers the program
commands that allow the computer to make choices and perform repetitive tasks.

Chapters 4, “Composing, Saving, and Running Programs,” shows you how to save your
programs in files, so you can give them to others or work on them another day. You
learn how to organize a program like an essay, so it is easy for you and others to read,
understand, and edit. You also learn a bit about how the computer is able to read, under-
stand, and run a program.

Chapter 5, “Defining Functions,” introduces an important design feature: the function. By
organizing your programs with functions, you can simplify complex tasks and eliminate
unnecessary duplications in your code.

Chapter 6, “User Interaction with the Mouse and the Keyboard,” covers features that
allow people to interact with your programs. You learn program commands for respond-
ing to mouse and keyboard events, as well as pop-up dialogs that can take information
from your programs’ users.

Chapter 7, “Recursion,” teaches you about another important design strategy called recur-
sion. You write some recursive functions that generate computer art and fractal images.

Chapter 8, “Objects and Classes,” offers a beginner’s guide to the use of objects and classes
in programming. You learn how to define new types of objects, such as menu items for
choosing colors and grids for board games, and use them in interesting programs.

Chapter 9, “Animations,” concludes the book with a brief introduction to animations. You
discover how to get images to move independently and interact in interesting ways.

Two appendixes follow the last chapter. Appendix A, “Turtle Graphics Commands,”
provides a reference for the set of turtle graphics commands introduced in the book.
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Each chapter includes a set of two programming exercises that build on concepts and
examples introduced earlier in that chapter. You can find the answers to these exercises
in Appendix B, “Solutions to Exercises.”

Companion Website Downloads
You may download the companion website files from www.cengageptr.com/downloads.
These files include the example programs discussed in the book and the solutions to the
exercises.

A Brief History of Computing
Before you jump ahead to programming, you might want to peek at some context. The
following table summarizes some of the major developments in the history of computing.
The discussion that follows provides more details about these developments.

Approximate Date Major Developments

Before 1800 Mathematicians develop and use algorithms
Abacus used as a calculating aide
First mechanical calculators built by Leibniz and Pascal

1800–1930 Jacquard’s loom
Babbage’s Analytical Engine
Boole’s system of logic
Hollerith’s punch card machine

1930s Turing publishes results on computability
Shannon’s theory of information and digital switching

1940s First electronic digital computers

1950s First symbolic programming languages
Transistors make computers smaller, faster, more durable, less
expensive
Emergence of data-processing applications

1960–1975 Integrated circuits accelerate the miniaturization of computer
hardware
First minicomputers
Time-sharing operating systems
Interactive user interfaces with keyboards and monitors
Proliferation of high-level programming languages
Emergence of a software industry and the academic study of
computer science and computer engineering
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1975–1990 First microcomputers and mass-produced personal computers
Graphical user interfaces become widespread
Networks and the Internet

1990–2000 Optical storage (CDs, DVDs)
Laptop computers
Multimedia applications (music, photography, video)
Computer-assisted manufacturing, retail, and finance
World Wide Web and e-commerce

2000–present Embedded computing (cars, appliances, and so on)
Handheld music and video players
Smartphones and tablets
Touch screen user interfaces
Wireless and cloud computing
Search engines
Social networks

Before Electronic Digital Computers
The term algorithm, as it’s now used, refers to a recipe or method for solving a problem.
It consists of a sequence of well-defined instructions or steps that describe a process that
halts with a solution to a problem.

Ancient mathematicians developed the first algorithms. The word “algorithm” comes
from the name of a Persian mathematician, Muhammad ibn Musa Al-Khawarizmi, who
wrote several mathematics textbooks in the ninth century. About 2,300 years ago, the
Greek mathematician Euclid, the inventor of geometry, developed an algorithm for com-
puting the greatest common divisor of two numbers, which you will see later in this book.

A device known as the abacus also appeared in ancient times to help people perform sim-
ple arithmetic. Users calculated sums and differences by sliding beads on a grid of wires.
The configuration of beads on the abacus served as the data.

In the seventeenth century, the French mathematician Blaise Pascal (1623–1662) built one
of the first mechanical devices to automate the process of addition. The addition opera-
tion was embedded in the configuration of gears within the machine. The user entered
the two numbers to be added by rotating some wheels. The sum or output number then
appeared on another rotating wheel. The German mathematician Gottfried Leibnitz

Introduction xvii



(1646–1716) built another mechanical calculator that included other arithmetic functions
such as multiplication. Leibnitz, who with Newton also invented calculus, went on to pro-
pose the idea of computing with symbols as one of our most basic and general intellectual
activities. He argued for a universal language in which one could solve any problem by
calculating.

Early in the nineteenth century, the French engineer Joseph Jacquard (1752–1834)
designed and constructed a machine that automated the process of weaving. Until then,
each row in a weaving pattern had to be set up by hand, a quite tedious, error-prone pro-
cess. Jacquard’s loom was designed to accept input in the form of a set of punched cards.
Each card described a row in a pattern of cloth. Although it was still an entirely mechani-
cal device, Jacquard’s loom possessed something that previous devices had lacked—the
ability to carry out the instructions of an algorithm automatically. The set of cards
expressed the algorithm or set of instructions that controlled the behavior of the loom. If
the loom operator wanted to produce a different pattern, he just had to run the machine
with a different set of cards.

The British mathematician Charles Babbage (1792–1871) took the concept of a program-
mable computer a step further by designing a model of a machine that, conceptually, bore
a striking resemblance to a modern general-purpose computer. Babbage conceived his
machine, which he called the Analytical Engine, as a mechanical device. His design called
for four functional parts: a mill to perform arithmetic operations, a store to hold data and
a program, an operator to run the instructions from punched cards, and an output to pro-
duce the results on punched cards. Sadly, Babbage’s computer was never built. The project
perished for lack of funds near the time when Babbage himself passed away.

In the last two decades of the nineteenth century, a U.S. Census Bureau statistician named
Herman Hollerith (1860–1929) developed a machine that automated data processing for
the U.S. Census. Hollerith’s machine, which had the same component parts as Babbage’s
Analytical Engine, simply accepted a set of punched cards as input and then tallied and
sorted the cards. His machine greatly shortened the time it took to produce statistical
results on the U.S. population. Government and business organizations seeking to auto-
mate their data processing quickly adopted Hollerith’s punched card machines. Hollerith
was also one of the founders of a company that eventually became IBM (International
Business Machines).

Also in the nineteenth century, the British secondary school teacher George Boole
(1815–1864) developed a system of logic. This system consisted of a pair of values,
TRUE and FALSE, and a set of three primitive operations on these values, AND, OR,
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and NOT. Boolean logic eventually became the basis for designing the electronic circuitry
to process binary information.

A half a century later, in the 1930s, the British mathematician Alan Turing (1912–1954)
explored the theoretical foundations and limits of algorithms and computation. Turing’s
most important contributions were to develop the concept of a universal machine that
could be specialized to solve any computable problems and to demonstrate that some pro-
blems are unsolvable by computers.

The First Electronic Digital Computers (1940–1950)
In the late 1930s, Claude Shannon (1916–2001), a mathematician and electrical engineer
at MIT, wrote a classic paper titled “A Symbolic Analysis of Relay and Switching
Circuits.” In this paper, he showed how operations and information in other systems,
such as arithmetic, could be reduced to Boolean logic and then to hardware. For example,
if the Boolean values TRUE and FALSE were written as the binary digits 1 and 0, one
could write a sequence of logical operations to compute the sum of two strings of binary
digits. All that was required to build an electronic digital computer was the ability to rep-
resent binary digits as on/off switches and to represent the logical operations in other
circuitry.

The needs of the combatants in World War II pushed the development of computer hard-
ware into high gear. Several teams of scientists and engineers in the United States, Great
Britain, and Germany independently created the first generation of general-purpose
digital electronic computers during the 1940s. All these scientists and engineers used
Shannon’s innovation of expressing binary digits and logical operations in terms of elec-
tronic switching devices. Among these groups was a team at Harvard University under the
direction of Howard Aiken. Their computer, called the Mark I, became operational in
1944 and did mathematical work for the U.S. Navy during the war. The Mark I was con-
sidered an electromechanical device because it used a combination of magnets, relays, and
gears to store and process data.

Another team under J. Presper Eckert and John Mauchly, at the University of Pennsyl-
vania, produced a computer called the ENIAC (Electronic Numerical Integrator and
Calculator). The ENIAC calculated ballistics tables for the artillery of the U.S. Army
toward the end of the war. Because the ENIAC used entirely electronic components, it
was almost a thousand times faster than the Mark I.

Two other electronic digital computers were completed a bit earlier than the ENIAC.
They were the ABC (Atanasoff-Berry Computer), built by John Atanasoff and Clifford
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Berry at Iowa State University in 1942, and the Colossus, constructed by a group working
with Alan Turing in England in 1943. The ABC was created to solve systems of simulta-
neous linear equations. Although the ABC’s function was much narrower than that of the
ENIAC, the ABC is now regarded as the first electronic digital computer. The Colossus,
whose existence had been top secret until recently, was used to crack the powerful Ger-
man Enigma code during the war.

The first electronic digital computers, sometimes called mainframe computers, consisted
of vacuum tubes, wires, and plugs, and they filled entire rooms. Although they were
much faster than people at computing, by our own current standards they were extraordi-
narily slow and prone to breakdown. Moreover, the early computers were extremely diffi-
cult to program. To enter or modify a program, a team of workers had to rearrange the
connections among the vacuum tubes by unplugging and replugging the wires. Each pro-
gram was loaded by literally hardwiring it into the computer. With thousands of wires
involved, it was easy to make a mistake.

The memory of these first computers stored only data, not the program that processed the
data. As you have read, the idea of a stored program first appeared 100 years earlier in
Jacquard’s loom and in Babbage’s design for the Analytical Engine. In 1946, John von
Neumann realized that the instructions of the programs could also be stored in binary
form in an electronic digital computer’s memory. His research group at Princeton devel-
oped one of the first modern stored-program computers.

Although the size, speed, and applications of computers have changed dramatically since
those early days, the basic architecture and design of the electronic digital computer have
remained remarkably stable.

The First Programming Languages (1950–1965)
The typical computer user now runs many programs, made up of millions of lines of code,
that perform what would have seemed like magical tasks 20 or 30 years ago. But the first
digital electronic computers had no software as today’s do. The machine code for a few
relatively simple and small applications had to be loaded by hand. As the demand for
larger and more complex applications grew, so did the need for tools to expedite the pro-
gramming process.

In the early 1950s, computer scientists realized that a symbolic notation could be used
instead of machine code, and the first assembly languages appeared. The programmers
would enter mnemonic codes for operations, such as ADD and OUTPUT, and for data
variables, such as SALARY and RATE, at a keypunch machine. The keystrokes punched
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a set of holes in a small card for each instruction. The programmers then carried their
stacks of cards to a system operator, who placed them in a device called a card reader.
This device translated the holes in the cards to patterns in the computer’s memory. A pro-
gram called an assembler then translated the application programs in memory to machine
code and executed them.

Programming in assembly language was a definite improvement over programming in
machine code. The symbolic notation used in assembly languages was easier for people
to read and understand. Another advantage was that the assembler could catch some pro-
gramming errors before the program actually executed. However, the symbolic notation
still appeared a bit arcane compared to the notations of conventional mathematics. To
remedy this problem, John Backus, a programmer working for IBM, developed
FORTRAN (Formula Translation Language) in 1954. Programmers, many of whom were
mathematicians, scientists, and engineers, could now use conventional algebraic notation.
FORTRAN programmers still entered their programs on a keypunch machine, but the
computer executed them after a compiler translated them to machine code.

FORTRAN was considered ideal for numerical and scientific applications. However,
expressing the kind of data used in data processing—in particular, textual information—
was difficult. For example, FORTRAN was not practical for processing information that
included people’s names, addresses, Social Security numbers, and the financial data of cor-
porations and other institutions. In the early 1960s, a team led by Rear Admiral Grace
Murray Hopper developed COBOL (Common Business Oriented Language) for data pro-
cessing in the United States government. Banks, insurance companies, and other institu-
tions were quick to adopt its use in data-processing applications.

Also in the late 1950s and early 1960s, John McCarthy, a computer scientist at MIT,
developed a powerful and elegant notation called LISP (List Processing) for expressing
computations. Based on a theory of recursive functions (a subject covered in Chapter 7
of this book), LISP captured the essence of symbolic information processing. A student
of McCarthy’s, Stephen “Slug” Russell, coded the first interpreter for LISP in 1960. The
interpreter accepted LISP expressions directly as inputs, evaluated them, and printed
their results. In its early days, LISP was used primarily for laboratory experiments in an
area of research known as artificial intelligence. More recently, LISP has been touted as
an ideal language for solving any difficult or complex problems.

Although they were among the first high-level programming languages, FORTAN and
LISP have survived for decades. They have undergone many modifications to improve
their capabilities and have served as models for the development of many other
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programming languages. COBOL, by contrast, is no longer in active use but has survived
mainly in the form of legacy programs that must still be maintained.

These new, high-level programming languages had one feature in common: abstraction.
In science or any other area of enquiry, an abstraction allows human beings to reduce
complex ideas or entities to simpler ones. For example, a set of ten assembly language
instructions might be replaced with an equivalent algebraic expression that consists of
only five symbols in FORTRAN. Put another way, any time you can say more with less,
you are using an abstraction. The use of abstraction is also found in other areas of com-
puting, such as hardware design and information architecture. The complexities don’t
actually go away, but the abstractions hide them from view. The suppression of distracting
complexity with abstractions allows computer scientists to conceptualize, design, and
build ever more sophisticated and complex systems.

Integrated Circuits, Interaction, and Timesharing (1965–1975)
In the late 1950s, the vacuum tube gave way to the transistor as the mechanism for imple-
menting the electronic switches in computer hardware. As a solid-state device, the transis-
tor was much smaller, more reliable, more durable, and less expensive to manufacture
than a vacuum tube. Consequently, the hardware components of computers generally
became smaller in physical size, more reliable, and less expensive. The smaller and more
numerous the switches became, the faster the processing and the greater the capacity of
memory to store information.

The development of the integrated circuit in the early 1960s allowed computer engineers to
build ever smaller, faster, and less expensive computer hardware components. They per-
fected a process of photographically etching transistors and other solid-state components
onto thin wafers of silicon, leaving an entire processor and memory on a single chip. In
1965, Gordon Moore, one of the founders of the computer chip manufacturer Intel, made
a prediction that came to be known as Moore’s Law. This prediction states that the proces-
sing speed and storage capacity of hardware will increase and its cost will decrease by
approximately a factor of 2 every 18 months. This trend has held true for the past 50 years.
For example, there were about 50 electrical components on a chip in 1965, whereas by 2010,
a chip could hold more than 60 million components. Without the integrated circuit, men
would not have gone to the moon in 1969, and the world would be without the powerful
and inexpensive handheld devices that people now use on a daily basis.

Minicomputers the size of a large office desk appeared in the 1960s. The means of devel-
oping and running programs were changing. Until then, a computer was typically located
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in a restricted area with a single human operator. Programmers composed their programs
on keypunch machines in another room or building. They then delivered their stacks of
cards to the computer operator, who loaded them into a card reader and compiled and
ran the programs in sequence on the computer. Programmers then returned to pick up
the output results, in the form of new stacks of cards or printouts. This mode of operation,
also called batch processing, might cause a programmer to wait days for results, including
error messages.

The increases in processing speed and memory capacity enabled computer scientists to
develop the first time-sharing operating system. John McCarthy, the creator of the pro-
gramming language LISP, recognized that a program could automate many of the func-
tions performed by the human system operator. When memory, including magnetic
secondary storage, became large enough to hold several users’ programs at the same
time, the programs could be scheduled for concurrent processing. Each process associated
with a program would run for a slice of time and then yield the CPU to another process.
All the active processes would repeatedly cycle for a turn with the CPU until they finished.

Several users could now run their own programs simultaneously by entering commands at
separate terminals connected to a single computer. As processor speeds continued to
increase, each user gained the illusion that a time-sharing computer system belonged
entirely to him.

By the late 1960s, programmers could enter program input at a terminal and see program
output immediately displayed on a CRT (Cathode Ray Tube) screen. Compared to its pre-
decessors, this new computer system was both highly interactive and much more accessi-
ble to its users.

Many relatively small and medium-sized institutions, such as universities, were now able
to afford computers. These machines were used not only for data processing and engi-
neering applications, but for teaching and research in the new and rapidly growing field
of computer science.

Personal Computing and Networks (1975–1990)
In the mid-1960s, Douglas Engelbart, a computer scientist working at the Stanford
Research Institute (SRI), first saw one of the ultimate implications of Moore’s Law: even-
tually, perhaps within a generation, hardware components would become small enough
and affordable enough to mass produce an individual computer for every human being.
What form would these personal computers take, and how would their owners use
them? Two decades earlier, in 1945, Engelbart had read an article in The Atlantic Monthly
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titled “As We May Think” that had already posed this question and offered some answers.
The author, Vannevar Bush, a scientist at MIT, predicted that computing devices would
serve as repositories of information, and ultimately, of all human knowledge. Owners of
computing devices would consult this information by browsing through it with pointing
devices and contribute information to the knowledge base almost at will. Engelbart agreed
that the primary purpose of the personal computer would be to augment the human intel-
lect, and he spent the rest of his career designing computer systems that would accom-
plish this goal.

During the late 1960s, Engelbart built the first pointing device, or mouse. He also designed
software to represent windows, icons, and pull-down menus on a bit-mapped display
screen. He demonstrated that a computer user could not only enter text at the keyboard
but directly manipulate the icons that represent files, folders, and computer applications
on the screen.

But for Engelbart, personal computing did not mean computing in isolation. He partici-
pated in the first experiment to connect computers in a network, and he believed that
soon people would use computers to communicate, share information, and collaborate
on team projects.

Engelbart developed his first experimental system, which he called NLS (oNLine System)
Augment, on a minicomputer at SRI. In the early 1970s, he moved to Xerox PARC
(Palo Alto Research Center) and worked with a team under Alan Kay to develop the first
desktop computer system. Called the Alto, this system had many of the features of
Engelbart’s Augment, as well as email and a functioning hypertext (a forerunner of the
World Wide Web). Kay’s group also developed a programming language called Smalltalk,
which was designed to create programs for the new computer and to teach programming
to children. Kay’s goal was to develop a personal computer the size of a large notebook,
which he called the Dynabook. Unfortunately for Xerox, the company’s management had
more interest in photocopy machines than in the work of Kay’s visionary research group.
However, a young entrepreneur named Steve Jobs visited the Xerox lab and saw the Alto
in action. In 1984, Apple Computer, the now-famous company founded by Steve Jobs,
brought forth the Macintosh, the first successful mass-produced personal computer with
a graphical user interface.

While Kay’s group was busy building the computer system of the future in its research lab,
dozens of hobbyists gathered near San Francisco to found the Homebrew Computer Club,
the first personal computer users group. They met to share ideas, programs, hardware,
and applications for personal computing. The first mass-produced personal computer,
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the Altair, appeared in 1975. The Altair contained Intel’s 8080 processor, the first micro-
computer chip. But from the outside, the Altair looked and behaved more like a miniature
version of the early computers than the Alto. Programs and their input had to be entered
by flipping switches, and output was displayed by a set of lights. However, the Altair was
small enough for personal computing enthusiasts to carry home, and I/O devices eventu-
ally were invented to support the processing of text and sound.

The Osborne and the Kaypro were among the first mass-produced interactive personal
computers. They boasted tiny display screens and keyboards, with floppy disk drives for
loading system software, applications software, and users’ data files. Early personal com-
puting applications were word processors, spreadsheets, and games such as Pacman and
SpaceWar. These computers also ran CP/M (Control Program for Microcomputers), the
first PC-based operating system.

In the early 1980s, a college dropout named Bill Gates and his partner Paul Allen built
their own operating system software, which they called MS-DOS (Microsoft Disk Operat-
ing System). They then arranged a deal with the giant computer manufacturer IBM to
supply MS-DOS for the new line of PCs that the company intended to mass-produce.
This deal proved to be an advantageous one for Gates’s company, Microsoft. Not only
did Microsoft receive a fee for each computer sold, but it was able to get a head start on
supplying applications software that would run on its operating system. Brisk sales of the
IBM PC and its “clones” to individuals and institutions quickly made MS-DOS the
world’s most widely used operating system. Within a few years, Gates and Allen had
become billionaires, and within a decade, Gates had become the world’s richest man, a
position he held for 13 straight years.

Also in the 1970s, the U.S. Government began to support the development of a network
that would connect computers at military installations and research universities. The first
such network, called ARPANET (Advanced Research Projects Agency Network), con-
nected four computers at SRI, UCLA (University of California at Los Angeles), UC Santa
Barbara, and the University of Utah. Bob Metcalfe, a researcher associated with Kay’s
group at Xerox, developed a software protocol called Ethernet for operating a network of
computers. Ethernet allowed computers to communicate in a local area network (LAN)
within an organization and with computers in other organizations via a wide area network
(WAN). By the mid 1980s, the ARPANET had grown into what is now called the Internet,
connecting computers owned by large institutions, small organizations, and individuals all
over the world.
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Communication and Media Computing (1990–2000)
In the 1990s, computer hardware costs continued to plummet, and processing speed and
memory capacity skyrocketed. Optical storage media such as compact discs (CDs) and
digital video discs (DVDs) were developed for mass storage. The computational proces-
sing of images, sound, and video became feasible and widespread. By the end of the
decade, entire movies were being shot or constructed and played back using digital
devices. The capacity to create lifelike three-dimensional animations of whole environ-
ments led to a new technology called virtual reality. New devices appeared, such as flatbed
scanners and digital cameras, which could be used along with the more traditional micro-
phone and speakers to support the input and output of almost any type of information.

Desktop and laptop computers not only performed useful work but gave their users new
means of personal expression. This decade saw the rise of computers as communication
devices, with email, instant messaging, bulletin boards, chat rooms, and the amazing
World Wide Web.

Perhaps the most interesting story from this period concerns Tim Berners-Lee, the creator
of the World Wide Web. In the late 1980s, Berners-Lee, a theoretical physicist doing
research at the CERN Institute in Geneva, Switzerland, began to develop some ideas for
using computers to share information. Computer engineers had been linking computers
to networks for several years, and it was already common in research communities to
exchange files and send and receive email around the world. However, the vast differences
in hardware, operating systems, file formats, and applications still made it difficult for
users who were not adept at programming to access and share this information. Berners-
Lee was interested in creating a common medium for sharing information that would be
easy to use, not only for scientists but for any other person capable of manipulating a key-
board and mouse and viewing the information on a monitor.

Berners-Lee was familiar with Vannevar Bush’s vision of a web-like consultation system,
Engelbart’s work on NLS Augment, and the first widely available hypertext systems. One
of these systems, Apple Computer’s Hypercard, broadened the scope of hypertext to hyper-
media. Hypercard allowed authors to organize not just text but images, sound, video, and
executable applications into webs of linked information. However, a Hypercard database sat
only on standalone computers; the links could not carry Hypercard data from one com-
puter to another. Furthermore, the supporting software ran only on Apple’s computers.

Berners-Lee realized that networks could extend the reach of a hypermedia system to any
computers connected to the Internet, making their information available worldwide.
To preserve its independence from particular operating systems, the new medium would
need to have universal standards for distributing and presenting the information.
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To ensure this neutrality and independence, no private corporation or individual govern-
ment could own the medium and dictate the standards.

Berners-Lee built the software for this new medium, now called the World Wide Web, in
1992. The software used many of the existing mechanisms for transmitting information
over the Internet. People contribute information to the web by publishing files on compu-
ters known as web servers. The web server software on these computers is responsible for
answering requests for viewing the information stored on the web server. To view infor-
mation on the web, people use software called a web browser. In response to a user’s com-
mands, a web browser sends a request for information across the Internet to the
appropriate web server. The server responds by sending the information back to the brow-
ser’s computer, called a web client, where it is displayed or rendered in the browser.

Although Berners-Lee wrote the first web server and web browser software, he made two
other, even more important, contributions. First, he designed a set of rules, called HTTP
(Hypertext Transfer Protocol), which allows any server and browser to talk to each other.
Second, he designed a language, HTML (Hypertext Markup Language), which allows
browsers to structure the information to be displayed on web pages. He then made all
these resources available to anyone for free.

Berners-Lee’s invention and gift of this universal information medium was a truly
remarkable achievement. Today there are millions of web servers in operation around
the world. Anyone with the appropriate training and resources—companies, government,
nonprofit organizations, and private individuals—can start up a new web server or obtain
space on one. Web browser software now runs not only on desktop and laptop computers,
but on handheld devices such as cell phones.

Wireless Computing and Smart Devices (2000–Present)
The twenty-first century has seen the rise of wireless technology and the further miniaturiza-
tion of computing devices. Today’s smartphones allow you to carry enormous computing
power around in your pocket and allow you to communicate with other computing
resources anywhere in the world, via wireless or cellular technology. Tiny computing devices
are embedded in cars and in almost every household appliance, from the washer/dryer and
home theater system to the exercise bike. Your data (photos, music, videos, and other infor-
mation) can now be stored in secure servers (the “cloud”), rather than on your devices.

Accompanying this new generation of devices and ways of connecting them is a wide
array of new software technologies and applications. Only three very significant innova-
tions are mentioned here.
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In the late 1990s, Steve Jobs rejoined Apple Computer after an extended time away. He
realized that the smaller handheld devices and wireless technology would provide a new
way of delivering all kinds of “content”—music, video, books, and applications—to people.

To realize his vision, Jobs pursued the design and development of a handheld device with a
clean, simple, and “cool” user interface to access this content. The first installment of such a
device was the iPod, a music player capable of holding your entire music library as well as
photos. Although the interface first used mechanical buttons and click wheels, it was soon
followed by the iTouch, which employed a touch screen and could play video. The touch
screen interface also allowed Apple and its programmers to provide apps, or special-
purpose applications (such as games), that ran on these devices. When wireless connectivity
became available, these apps could provide email, a web browser, weather channels, and
thousands of other services. The iPhone and iPad, true multimedia devices with micro-
phones, cameras, and motion sensors, followed along these lines a few years later.

Jobs also developed a new business model for distributing this content. Owners of these
devices would connect to an e-store, such as the iTunes Store, the iBooks Store, and the App
Store, to download free content or content for purchase. Authors, musicians, and app devel-
opers could upload their products to these stores in a similar manner. Thus, in a few short
years, Jobs changed the way people consume, produce, and think about media content.

Also in the late 1990s, two Stanford University computer science graduate students, Larry
Page and Sergey Brin, developed a powerful algorithm for searching the web. This algo-
rithm served as the basis for a company they founded named Google. “To Google” is
now a verb, synonymous with “to search on the web.” Although people continue to browse
or “surf” the web, much of what they do on the web is now based on search. In fact, most
online research and many new industries would be inconceivable without search.

Finally, just after the turn of the millennium, a Harvard University undergraduate student
named Mark Zuckerberg developed a prototype of the first social network program, which
he called Facebook. The company he founded with the same name has changed the way
that people connect to each other and present themselves online.

This concludes the book’s not-so-brief overview of the history of computing. If you want
to learn more about this history, run a web search or consult your local library. Now it’s
time for that introduction to programming in Python.

I Appreciate Your Feedback
I have tried to produce a high-quality text, but should you encounter errors, please report
them to lambertk@wlu.edu. Any errata and other information about this book will be
posted on the website http://home.wlu.edu/~lambertk/python/.
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Chapter 1

Getting Started with Python

In this chapter, you explore some of Python’s basic code elements. These code elements
include operations on Python’s basic types of data, such as numbers, strings, lists, and dic-
tionaries. These data and operations form the building blocks of programs you will
develop later in this book. The code presented in this chapter consists of simple frag-
ments. As you read along, you are encouraged to run these code fragments in Python’s
interactive shell. Just remember that the best way to learn is to try things out yourself!

Taking Care of Preliminaries
In this section, you learn how to download Python and its documentation from its web-
site, launch Python’s IDLE shell, and evaluate Python expressions and statements within
the shell.

Downloading and Installing Python
Some computer systems, such as Mac OS and Linux, come with Python already installed.
Others, such as Windows, do not. In either case, you should visit Python’s website at
www.python.org/download/ to download the most current version of Python for your
particular system. As of this writing, the most current version of Python is 3.3.4, but that
number may be larger by the time you read these words.

While you are at Python’s website, it’s a good idea to download the documentation for
your new version of Python, at www.python.org/doc/. You might also bookmark the link
to the documentation for quick browsing online.
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After downloading Python for your system, you install it by double-clicking on the instal-
lation file if you’re a Mac or Windows user. Linux users have to unzip a source code pack-
age, compile it with GCC, and place it in the appropriate directory on their systems.

Launching and Working in the IDLE Shell
For the first three chapters of this book, you experiment with Python code in Python’s
IDLE shell. The shell displays a window in which you can enter program codes and obtain
responses. The term IDLE stands for Integrated DeveLopment Environment. (It’s also the
last name of a Monty Python character, Eric Idle.) To launch IDLE in these three chap-
ters, you run the command

idle3

in a terminal window. Before you do this, you must open or launch a terminal window, as
follows:

n Mac users—Launch Terminal from the Utilities folder.

n Windows users—Launch a DOS window by entering the word command in the Start
menu’s entry box.

n Linux users—Right-click on the desktop and select Open Terminal.

Alternatively, Mac OS and Windows users can launch IDLE by double-clicking on the IDLE
icon in the folder where your Python system is located. This folder is in the Applications

folder in Mac OS and in the All Programs option of the Windows Start menu. You can cre-
ate the appropriate shortcuts to these options for quick and easy access.

When you launch IDLE in a terminal window, you should see windows like the ones
shown in Figure 1.1 (Mac OS version). Hereafter, the IDLE shell is simply called the shell.

Figure 1.1
A new shell window.
© 2014 Python Software Foundation.

2 Chapter 1 n Getting Started with Python



If the version number displayed in the shell is not 3.3.4 or higher, you need to close the
shell window and download and install the current version of Python, as described earlier.

The shell provides a “sandbox” where you can try out simple Python code fragments. To run
a code fragment, you type it after the >>> symbol and press the Return or Enter key. The shell
then responds by displaying a result and giving you another >>> prompt. Figure 1.2 shows
the shell and its results after the user has entered several Python code fragments.

Figure 1.2
The shell after entering several code fragments.
© 2014 Python Software Foundation.

Some of the text is color-coded (blue, green, and red) in your shell window, although
these colors do not appear in this monochrome book. The colors indicate the roles of var-
ious code elements, to be described shortly.

To repeat the run of an earlier line of code, just place the cursor at the end of that line and
press Return or Enter twice.

When you are ready to quit a session with the shell, you just select the shell window’s
close box or close the associated terminal window. However, keep a shell handy when
reading this book, so you can try out each new idea as you encounter it.

Obtaining Python Help
There are two good ways to get help when writing Python code:

1. Browse the Python documentation.

2. Run Python’s help function in the shell.
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Python’s help function is especially useful for getting quick help on basic code elements,
such as functions. For example, the use of Python’s abs function in Figure 1.2 might seem
obvious to you, but if you’re not sure, you can learn more by entering help(abs), as shown
in Figure 1.3.

Figure 1.3
Getting help in the shell.
© 2014 Python Software Foundation.

Working with Numbers
Almost all computer programs use numbers in some way or another. In this section, you
explore arithmetic with two basic types of numbers in Python: integers and floating-point
numbers. Along the way, the important concepts of variables, assignment, functions, and
modules are introduced.

Using Arithmetic
As you know from mathematics, integers are the infinite sequence of whole numbers
{..., –2, –1, 0, 1, 2, ...}. Although this sequence is infinite in mathematics, in a computer
program the sequence is finite and thus has a largest positive integer and a largest negative
integer. In Python, the sequence of integers is quite large; the upper and lower bounds of
the sequence depend on the amount of computer memory available.

Real numbers are numbers with a decimal point, such as 3.14 and 7.50. The digits to the
right of the decimal point, called the fractional part, represent the precision of a real num-
ber. In mathematics, real numbers have infinite precision. The set of real numbers is also
infinite. However, in a computer program, real numbers have an upper bound, a lower
bound, and a finite precision (typically 16 digits). In Python and most other programming
languages, real numbers are called floating-point numbers.

As you saw in the previous section, when you enter a number in the Python shell, Python
simply displays that number; when you enter an arithmetic expression, Python evaluates
and displays the value of that expression. Thus, the shell behaves like a pocket calculator
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(without the buttons). Python’s basic arithmetic operations are listed in Table 1.1. In this
table, the symbols A and B can be either numbers or expressions containing numbers and
operators.

Table 1.1 Basic Arithmetic Operations

Operation What It Does Example Value

A + B Returns the sum of A and B 5 + 2 7

A – B Returns the result of subtracting B from A 5 – 2 3

A * B Returns the product of A and B 5 * 2 10

A / B Returns the exact result of dividing A by B 5 / 2 2.5

A // B Returns the integer quotient from dividing
A by B

5 // 2 2

A % B Returns the integer remainder from
dividing A by B

5 % 2 1

A ** B Returns AB 5 ** 2 25

– A Returns the arithmetic negation of A – (5 * 2) –10

Note the following points about the arithmetic operations:

1. The / operator produces the exact result of division, as a floating-point number.

2. The // operator produces an integer quotient.

3. When two integers are used with the other operators, the result is an integer.

4. When at least one floating-point number is used with the other operators, the result
is a floating-point number. Thus, 5 * 2 is 10, whereas 5 * 2.3 is 11.5.

As in mathematics, the arithmetic operators are governed by precedence rules. If operators
of the same precedence appear in consecutive positions, they are evaluated in left-to-right
order. For example, the expression 3 + 4 – 2 + 5 is evaluated from left to right, producing 10.

When the operators do not have the same precedence, ** is evaluated first, then multipli-
cation (*, /, //, or %), and finally addition (+ or –). For example, the expression 4 + 3 * 2 ** 3

first evaluates 2 ** 3, then 3 * 8, and finally 4 + 24, to produce 32.

You can use parentheses to override these rules. For example, (3 + 4) * 2 begins evaluation
with the addition, whereas 3 + 4 * 2 begins evaluation with the multiplication. What are the
results of evaluating these two expressions? Open a shell and check!
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Negative numbers are represented with a minus sign. This sign is also used to negate more
complex expressions, as in – (3 * 5). The precedence of the minus sign when used in this
way is higher than that of any other arithmetic operator.

Table 1.2 shows the precedence of the arithmetic operators, where the operators of higher
precedence are evaluated first.

Table 1.2 The Precedence of Arithmetic Operators

Operator Precedence

– (unary negation) 4

** 3

*, /, //, % 2

+, – (binary subtraction) 1

The exponentiation operator ** is also right associative. This means that consecutive **

operators are evaluated from right to left. Thus, the expression 2 ** 3 ** 2 produces 512,
whereas (2 ** 3) ** 2 produces 64.

Finally, a note on style: although Python ignores spaces within arithmetic expressions, the
use of spaces around each operator can make your code easy for you and other people to
read. For example, compare

34+67*2**6–3

to

34 + 67 * 2 ** 6 – 3

Working with Variables and Assignment
Suppose you are working on a program that computes and uses the volume of a sphere.
You are given the sphere’s radius of 4.2 inches. You first compute its volume using the
formula 4/3πr3, with 3.1416 as your estimate of π. Here is the Python expression you
might write for that:

4 / 3 * 3.1416 * 4.2 ** 3
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If the value of this expression is used just once in your program, you compute it just once
and use it there. However, if it is used in several places in your program, you must write
the same expression several times. That’s a waste of your time in writing code and a waste
of the computer’s time in evaluating it. Is there a way to write the expression, compute its
value just once, and then simply use this value many times thereafter?

Yes, there is, and that’s one reason why programs use variables. A variable in Python is a
name that stands for a value. A Python variable is given a value by using the assignment
operator =, according to the following form:

variable = expression

where variable is any Python name (with a few exceptions to be discussed later) and
expression is any Python expression (including the arithmetic expressions under discus-
sion here). Thus, in our example, the variable volume could be given the volume of the
sphere via the assignment

volume = 4 / 3 * 3.1416 * 4.2 ** 3

and then used many times in other code later on. Note that because the precedence of
assignment is lower that that of the other operators, the expression to the right of the =

operator is evaluated first, before the variable to the left receives the value.

Now, suppose you had to compute the volumes of several different spheres. You could
type out the expressions 4 / 3 and 3.1416 every time you write the code to compute a
new volume. But you could instead use other variables, such as FOUR_THIRDS and PI, to
make these values easy to remember each time you repeat the formula. Figure 1.4 shows
a session in the shell where these values are established and the volumes of two spheres,
with radii 4.2 and 5.4, are computed.

Figure 1.4
Using variables in code fragments.
© 2014 Python Software Foundation.
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Python variables are spelled using letters, digits, and the underscore (‘_’). The following
rules apply to their use:

n A variable must begin with a letter or an underscore (‘_’) and contain at least
one letter.

n Variables are case sensitive. Thus, the variable volume is different from the variable
Volume, although they may refer to the same value.

n Python programmers typically spell variables in lowercase letters but use capital
letters or underscores to emphasize embedded words, as in firstVolume or
first_volume.

n When the value of a variable will not change after its initial assignment, it’s
considered a constant. PI is an example of a constant. Python programmers
typically spell constants using all caps to indicate this.

n Before you can use a variable, you must assign it a value. An attempt to use a variable
that has not been initialized in this way generates an error message, as shown in
Figure 1.5.

Figure 1.5
Attempting to use a variable that has not been assigned a value.
© 2014 Python Software Foundation.

To summarize, there are three reasons to use variables in Python code:

1. They make code easy to read and understand.

2. They help to eliminate unnecessary computations.

3. They make code easy to modify and maintain (to be discussed later).
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Using Functions
As you have seen, the arithmetic and assignment operations consist of an operator and
one or more operands. Python also provides many other basic operations, which are pack-
aged as functions. A function is like an operator but is referred to by a name rather than
an operator symbol. When a function is evaluated or called, its operands are supplied to it
in the form of arguments. For example, the Python function abs expects a number as its
single argument and computes and returns that number’s absolute value. Thus, the func-
tion call abs(-34) returns 34.

When a Python function is called, Python first evaluates its arguments. The resulting
values are then passed to the function, which uses them to compute and return its value.
Although the written form of a function call is slightly different, the process is no different
from evaluating an expression with operands and operators. The form of a function call is
as follows:

functionName(argumentExpression-1, argumentExpression-2, ...)

Function calls are expressions, and their arguments are expressions. For example, the
arithmetic expression

abs(length - width) + 2

produces a result, as long as the variables length and width refer to numbers.

Some Python functions allow for optional arguments as well as required arguments. For
example, the Python function round expects one required argument: the number to be
rounded. If that number is a floating-point number, the integer value nearest to it is
returned. However, round can also be called with a second argument: an integer indicating
the number of places of precision to use in the result. Thus, round(3.1416) returns 3,
whereas round(3.1416, 3) returns 3.142.

Generally, the number of arguments used with a function must match the number of its
required arguments, unless it allows optional arguments. For functions provided by
Python, the types of the arguments (such as numbers) used must also match the types of
the arguments expected at each position in the sequence of arguments.

Using the math Module
Python’s functions either are already available to call in the shell or must be imported
from modules before use. A Python module is just a library of functions and other
resources. There are many such modules, as you can see by browsing the modules index
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