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Preface

More than 20 years have passed since I authored the Python Essential Reference. At that time,
Python was a much smaller language and it came with a useful set of batteries in its
standard library. It was something that could mostly fit in your brain. The Essential Reference
reflected that era. It was a small book that you could take with you to write some Python
code on a desert island or inside a secret vault. Over the three subsequent revisions, the
Essential Reference stuck with this vision of being a compact but complete language
reference—because if you’re going to code in Python on vacation, why not use all of it?

Today, more than a decade since the publication of the last edition, the Python world is
much different. No longer a niche language, Python has become one of the most popular
programming languages in the world. Python programmers also have a wealth of
information at their fingertips in the form of advanced editors, IDEs, notebooks, web
pages, and more. In fact, there’s probably little need to consult a reference book when
almost any reference material you might want can be conjured to appear before your eyes
with the touch of a few keys.

If anything, the ease of information retrieval and the scale of the Python universe
presents a different kind of challenge. If you’re just starting to learn or need to solve a new
problem, it can be overwhelming to know where to begin. It can also be difficult to
separate the features of various tools from the core language itself. These kinds of problems
are the rationale for this book.
Python Distilled is a book about programming in Python. It’s not trying to document

everything that’s possible or has been done in Python. Its focus is on presenting a modern
yet curated (or distilled) core of the language. It has been informed by my years of teaching
Python to scientists, engineers, and software professionals. However, it’s also a product of
writing software libraries, pushing the edges of what makes Python tick, and finding out
what’s most useful.

For the most part, the book focuses on Python programming itself. This includes
abstraction techniques, program structure, data, functions, objects, modules, and so
forth—topics that will well serve programmers working on Python projects of any size.
Pure reference material that can be easily obtained via an IDE (such as lists of functions,
names of commands, arguments, etc.) is generally omitted. I’ve also made a conscious
choice to not describe the fast-changing world of Python tooling—editors, IDEs,
deployment, and related matters.

Perhaps controversially, I don’t generally focus on language features related to large-scale
software project management. Python is sometimes used for big and serious things—
comprised of millions upon millions of lines of code. Such applications require specialized
tooling, design, and features. They also involve committees, and meetings, and decisions
to be made about very important matters. All this is too much for this small book. But



xiv Preface

perhaps the honest answer is that I don’t use Python to write such applications—and
neither should you. At least not as a hobby.

In writing a book, there is always a cut-off for the ever-evolving language features. This
book was written during the era of Python 3.9. As such, it does not include some of the
major additions planned for later releases—for example, structural pattern matching.
That’s a topic for a different time and place.

Last, but not least, I think it’s important that programming remains fun. I hope that my
book will not only help you become a productive Python programmer but also capture
some of the magic that has inspired people to use Python for exploring the stars, flying
helicopters on Mars, and spraying squirrels with a water cannon in the backyard.
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1

Python Basics

This chapter gives an overview of the core of the Python language. It covers variables,
data types, expressions, control flow, functions, classes, and input/output. The chapter
concludes with a discussion of modules, script writing, packages, and a few tips on
organizing larger programs. This chapter is not trying to provide comprehensive coverage
of every feature, nor does it concern itself with all of the tooling that might surround a
larger Python project. However, experienced programmers should be able to extrapolate
from the material here to write more advanced programs. Newcomers are encouraged to
try the examples in a simple environment, such as a terminal window and a basic text
editor.

1.1 Running Python
Python programs are executed by an interpreter. There are many different environments
in which the Python interpreter might run—an IDE, a browser, or a terminal window.
However, underneath all that, the core of the interpreter is a text-based application that
can be started by typing python in a command shell such as bash. Since Python 2 and
Python 3 might both be installed on the same machine, you might need to type python2

or python3 to pick a version. This book assumes Python 3.8 or newer.
When the interpreter starts, a prompt appears where you can type programs into a

so-called “read-evaluation-print loop” (or REPL). For example, in the following output,
the interpreter displays its copyright message and presents the user with the >>> prompt, at
which the user types a familiar “Hello World” program:

Python 3.8.0 (default, Feb 3 2019, 05:53:21)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.38)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> print('Hello World')

Hello World

>>>
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Certain environments may display a different prompt. The following output is from
ipython (an alternate shell for Python):

Python 3.8.0 (default, Feb 4, 2019, 07:39:16)

Type 'copyright', 'credits' or 'license' for more information

IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: print('Hello World')

Hello World

In [2]:

Regardless of the exact form of output you see, the underlying principle is the same.
You type a command, it runs, and you immediately see the output.

Python’s interactive mode is one of its most useful features because you can type any
valid statement and immediately see the result. This is useful for debugging and
experimentation. Many people, including the author, use interactive Python as their
desktop calculator. For example:

>>> 6000 + 4523.50 + 134.25

10657.75

>>> _ + 8192.75

18850.5

>>>

When you use Python interactively, the variable _ holds the result of the last operation.
This is useful if you want to use that result in subsequent statements. This variable only
gets defined when working interactively, so don’t use it in saved programs.

You can exit the interactive interpreter by typing quit() or the EOF (end of file)
character. On UNIX, EOF is Ctrl+D; on Windows, it’s Ctrl+Z.

1.2 Python Programs
If you want to create a program that you can run repeatedly, put statements in a text file.
For example:

# hello.py

print('Hello World')

Python source files are UTF-8-encoded text files that normally have a .py suffix. The
# character denotes a comment that extends to the end of the line. International (Unicode)
characters can be freely used in the source code as long as you use the UTF-8 encoding
(this is the default in most editors, but it never hurts to check your editor settings if you’re
unsure).
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To execute the hello.py file, provide the filename to the interpreter as follows:

shell % python3 hello.py

Hello World

shell %

It is common to use #! to specify the interpreter on the first line of a program, like this:

#!/usr/bin/env python3

print('Hello World')

On UNIX, if you give this file execute permissions (for example, by chmod +x

hello.py), you can run the program by typing hello.py into your shell.
On Windows, you can double-click on a .py file or type the name of the program into

the Run command on the Windows Start menu to launch it. The #! line, if given, is used
to pick the interpreter version (Python 2 versus 3). Execution of a program might take
place in a console window that disappears immediately after the program completes—
often before you can read its output. For debugging, it’s better to run the program within
a Python development environment.

The interpreter runs statements in order until it reaches the end of the input file. At
that point, the program terminates and Python exits.

1.3 Primitives, Variables, and Expressions
Python provides a collection of primitive types such as integers, floats, and strings:

42 # int

4.2 # float

'forty-two' # str

True # bool

A variable is a name that refers to a value. A value represents an object of some type:

x = 42

Sometimes you might see a type explicitly attached to a name. For example:

x: int = 42

The type is merely a hint to improve code readability. It can be used by third-party
code-checking tools. Otherwise, it is completely ignored. It does not prevent you from
assigning a different kind of value later.

An expression is a combination of primitives, names, and operators that produces a
value:

2 + 3 * 4 # -> 14
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The following program uses variables and expressions to perform a compound-interest
calculation:

# interest.py

principal = 1000 # Initial amount

rate = 0.05 # Interest rate

numyears = 5 # Number of years

year = 1

while year <= numyears:

principal = principal * (1 + rate)

print(year, principal)

year += 1

When executed, it produces the following output:

1 1050.0

2 1102.5

3 1157.625

4 1215.5062500000001

5 1276.2815625000003

The while statement tests the conditional expression that immediately follows. If the
tested condition is true, the body of the while statement executes. The condition is
then retested and the body executed again until the condition becomes false. The body
of the loop is denoted by indentation. Thus, the three statements following while in
interest.py execute on each iteration. Python doesn’t specify the amount of required
indentation, as long as it’s consistent within a block. It is most common to use four spaces
per indentation level.

One problem with the interest.py program is that the output isn’t very pretty. To
make it better, you could right-align the columns and limit the precision of principal
to two digits. Change the print() function to use a so-called f-string like this:

print(f'{year:>3d} {principal:0.2f}')

In the f-string, variable names and expressions can be evaluated by enclosing them in
curly braces. Optionally, each substitution can have a formatting specifier attached to it.
'>3d' means a three-digit decimal number, right aligned. '0.2f' means a floating-point
number with two decimal places of accuracy. More information about these formatting
codes can be found in Chapter 9.

Now the output of the program looks like this:

1 1050.00

2 1102.50

3 1157.62

4 1215.51

5 1276.28
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1.4 Arithmetic Operators
Python has a standard set of mathematical operators, shown in Table 1.1. These operators
have the same meaning they do in most other programming languages.

Table 1.1 Arithmetic Operators

Operation Description

x + y Addition

x - y Subtraction

x * y Multiplication

x / y Division

x // y Truncating division

x ** y Power (x to the y power)

x % y Modulo (x mod y). Remainder.

–x Unary minus

+x Unary plus

The division operator (/) produces a floating-point number when applied to integers.
Therefore, 7/4 is 1.75. The truncating division operator //, also known as floor division,
truncates the result to an integer and works with both integers and floating-point
numbers. The modulo operator returns the remainder of the division x // y. For
example, 7 % 4 is 3. For floating-point numbers, the modulo operator returns the
floating-point remainder of x // y, which is x – (x // y) * y.

In addition, the built-in functions in Table 1.2 provide a few more commonly used
numerical operations.

Table 1.2 Common Mathematic Functions

Function Description

abs(x) Absolute value

divmod(x,y) Returns (x // y, x % y)

pow(x,y [,modulo]) Returns (x ** y) % modulo

round(x,[n]) Rounds to the nearest multiple of 10 to the nth power.

The round() function implements “banker’s rounding.” If the value being rounded is
equally close to two multiples, it is rounded to the nearest even multiple (for example, 0.5
is rounded to 0.0, and 1.5 is rounded to 2.0).

Integers provide a few additional operators to support bit manipulation, shown in
Table 1.3.
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Table 1.3 Bit Manipulation Operators

Operation Description

x << y Left shift

x >> y Right shift

x & y Bitwise and

x | y Bitwise or

x ^ y Bitwise xor (exclusive or)

~x Bitwise negation

One would commonly use these with binary integers. For example:

a = 0b11001001

mask = 0b11110000

x = (a & mask) >> 4 # x = 0b1100 (12)

In this example, 0b11001001 is how you write an integer value in binary. You could
have written it as decimal 201 or hexadecimal 0xc9, but if you’re fiddling with bits, binary
makes it easier to visualize what you’re doing.

The semantics of the bitwise operators assumes that the integers use a two’s
complement binary representation and that the sign bit is infinitely extended to the left.
Some care is required if you are working with raw bit patterns that are intended to map to
native integers on the hardware. This is because Python does not truncate the bits or allow
values to overflow—instead, the result will grow arbitrarily large in magnitude. It’s up to
you to make sure the result is properly sized or truncated if needed.

To compare numbers, use the comparison operators in Table 1.4.

Table 1.4 Comparison Operators

Operation Description

x == y Equal to

x != y Not equal to

x < y Less than

x > y Greater than

x >= y Greater than or equal to

x <= y Less than or equal to

The result of a comparison is a Boolean value True or False.
The and, or, and not operators (not to be confused with the bit-manipulation

operators above) can form more complex Boolean expressions. The behavior of these
operators is as shown in Table 1.5.

A value is considered false if it is literally False, None, numerically zero, or empty.
Otherwise, it’s considered true.
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Table 1.5 Logical Operators

Operator Description

x or y If x is false, return y; otherwise, return x.

x and y If x is false, return x; otherwise, return y.

not x If x is false, return True; otherwise, return False.

It is common to write an expression that updates a value. For example:

x = x + 1

y = y * n

For these, you can write the following shortened operation instead:

x += 1

y *= n

This shortened form of update can be used with any of the +, -, *, **, /, //, %, &, |, ^,
<<, >> operators. Python does not have increment (++) or decrement (--) operators found
in some other languages.

1.5 Conditionals and Control Flow
The while, if and else statements are used for looping and conditional code execution.
Here’s an example:

if a < b:

print('Computer says Yes')

else:

print('Computer says No')

The bodies of the if and else clauses are denoted by indentation. The else clause is
optional. To create an empty clause, use the pass statement, as follows:

if a < b:

pass # Do nothing

else:

print('Computer says No')

To handle multiple-test cases, use the elif statement:

if suffix == '.htm':

content = 'text/html'

elif suffix == '.jpg':

content = 'image/jpeg'
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elif suffix == '.png':

content = 'image/png'

else:

raise RuntimeError(f'Unknown content type {suffix!r}')

If you are assigning a value in combination with a test, use a conditional expression:

maxval = a if a > b else b

This is the same as the longer:

if a > b:

maxval = a

else:

maxval = b

Sometimes, you may see the assignment of a variable and a conditional combined
together using the := operator. This is known as an assignment expression (or more
colloquially as the “walrus operator” because := looks like a walrus tipped over on its
side—presumably playing dead). For example:

x = 0

while (x := x + 1) < 10: # Prints 1, 2, 3, ..., 9

print(x)

The parentheses used to surround an assignment expression are always required.
The break statement can be used to abort a loop early. It only applies to the innermost

loop. For example:

x = 0

while x < 10:

if x == 5:

break # Stops the loop. Moves to Done below

print(x)

x += 1

print('Done')

The continue statement skips the rest of the loop body and goes back to the top of the
loop. For example:

x = 0

while x < 10:

x += 1

if x == 5:

continue # Skips the print(x). Goes back to loop start.

print(x)

print('Done')
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1.6 Text Strings
To define a string literal, enclose it in single, double, or triple quotes as follows:

a = 'Hello World'

b = "Python is groovy"

c = '''Computer says no.'''

d = """Computer still says no."""

The same type of quote used to start a string must be used to terminate it. Triple-
quoted strings capture all the text until the terminating triple quote—as opposed to single-
and double-quoted strings which must be specified on one logical line. Triple-quoted
strings are useful when the contents of a string literal span multiple lines of text:

print('''Content-type: text/html

<h1> Hello World </h1>

Click <a href="http://www.python.org">here</a>.

''')

Immediately adjacent string literals are concatenated into a single string. Thus, the
above example could also be written as:

print(

'Content-type: text/html\n'

'\n'

'<h1> Hello World </h1>\n'

'Clock <a href="http://www.python.org">here</a>\n'

)

If the opening quotation mark of a string is prefaced by an f, escaped expressions
within a string are evaluated. For example, in earlier examples, the following statement was
used to output values of a calculation:

print(f'{year:>3d} {principal:0.2f}')

Although this is only using simple variable names, any valid expression can appear. For
example:

base_year = 2020

...

print(f'{base_year + year:>4d} {principal:0.2f}')

As an alternative to f-strings, the format() method and % operator are also sometimes
used to format strings. For example:

print('{0:>3d} {1:0.2f}'.format(year, principal))

print('%3d %0.2f' % (year, principal))




