

Java
Programming
Tenth Edition

Joyce Farrell

Australia • Brazil • Canada • Mexico • Singapore • United Kingdom • United States

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2023, © 2019, © 2016 Cengage Learning, Inc.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced or distributed in any form or by any means, except as
permitted by U.S. copyright law, without the prior written permission of the
copyright owner.

Unless otherwise noted, all content is Copyright © Cengage Learning, Inc.

Unless otherwise noted, all screenshots are courtesy of Microsoft Corporation.

Microsoft is a registered trademark of Microsoft Corporation in the U.S.
and/or other countries.

The names of all products mentioned herein are used for identification
purposes only and may be trademarks or registered trademarks of their
respective owners. Cengage Learning disclaims any affiliation, association,
connection with, sponsorship, or endorsement by such owners.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706

or support.cengage.com.

For permission to use material from this text or product, submit all
requests online at www.copyright.com.

Library of Congress Control Number: 2021925780

ISBN: 978-0-357-67342-3

Cengage

200 Pier 4 Boulevard
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions with
employees residing in nearly 40 different countries and sales in more than
125 countries around the world. Find your local representative at
www.cengage.com.

To learn more about Cengage platforms and services, register or access
your online learning solution, or purchase materials for your course, visit
www.cengage.com.

JavaTM Programming, Tenth Edition

Joyce Farrell

SVP, Higher Education Product Management: Erin

Joyner

VP, Product Management, Learning Experiences:

Thais Alencar

Product Director: Mark Santee

Associate Product Manager: Tran Pham

Product Assistant: Ethan Wheel

Learning Designer: Mary Convertino

Senior Content Manager: Maria Garguilo

Associate Digital Delivery Quality Partner: David

O’Connor

Technical Editor: John Freitas

Developmental Editor: Dan Seiter

VP, Product Marketing: Jason Sakos

Director, Product Marketing: April Danaë

Portfolio Marketing Manager: Mackenzie Paine

IP Analyst: Ann Hoffman

IP Project Manager: Integra Software Services

Production Service: Straive

Senior Designer: Erin Griffin

Cover Image Source: iStock.com/gremlin

Printed in the United States of America
Print Number: 01   Print Year: 2022

Notice to the Reader
Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with
any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and
include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety
precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions
contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations
or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any
such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to
such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from
the readers’ use of, or reliance upon, this material.

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-300

PREFACE� XI

CHAPTER 1 Creating Java Programs��� 1

CHAPTER 2 Using Data��� 39

CHAPTER 3 Using Methods��� 83

CHAPTER 4 Using Classes and Objects��115

CHAPTER 5 Making Decisions���161

CHAPTER 6 Looping��201

CHAPTER 7 Characters, Strings, and the StringBuilder���������������������������������������237

CHAPTER 8 Arrays��267

CHAPTER 9 Inheritance and Interfaces��329

CHAPTER 10 Exception Handling��393

CHAPTER 11 File Input and Output��441

CHAPTER 12 Recursion��487

CHAPTER 13 Collections and Generics��511

CHAPTER 14 Introduction to Swing Components���545

APPENDIX A Working with the Java Platform ��587

APPENDIX B Data Representation ��591

APPENDIX C Formatting Output ���595

APPENDIX D Generating Random Numbers ���603

APPENDIX E Javadoc ���607

APPENDIX F Using JavaFX and Scene Builder ��613

GLOSSARY� 625
INDEX� 641

BRIEF CONTENTS

iii

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CONTENTS

PREFACE� XI

CHAPTER 1

CREATING JAVA PROGRAMS� 1
1.1	 Learning Programming Terminology� 1
1.2	� Comparing Procedural and Object-

Oriented Programming Concepts� 4
Procedural Programming� 4

Object-Oriented Programming� 5

Understanding Classes, Objects, and Encapsulation� 6

Understanding Inheritance and Polymorphism� 7

1.3	 Features of the Java Programming
Language� 8

1.4	� Analyzing a Java Application That
Produces Console Output� 10

Understanding the Statement That Produces the
Output� 10

Understanding the First Class� 12

Understanding the main() Method� 14

Indent Style� 15

Saving a Java Class� 16

1.5	 Compiling a Java Class and
Correcting Syntax Errors� 18

Compiling a Java Class� 18

Correcting Syntax Errors� 19

1.6	� Running a Java Application and
Correcting Logic Errors� 23

Running a Java Application� 23

Modifying a Compiled Java Class� 23

Correcting Logic Errors� 24

1.7	 Adding Comments to a Java Class� 25
1.8	� Creating a Java Application That

Produces GUI Output� 27
1.9	 Finding Help� 29

Don’t Do It� 30

Summary� 31

Key Terms� 32

Review Questions� 33

Programming Exercises� 34

Debugging Exercises� 36

Game Zone� 36

Case Problems� 37

CHAPTER 2

USING DATA� 39
2.1	 Declaring and Using Constants

and Variables� 39
Declaring Variables� 40

Declaring Named Constants� 42

The Scope of Variables and Constants� 43

Concatenating Strings to Variables and
Constants� 43

Pitfall: Forgetting That a Variable Holds One
Value at a Time� 45

2.2	 Learning About Integer Data
Types� 47

2.3	 Using the boolean Data Type� 51

2.4	 Learning About Floating-Point
Data Types� 52

2.5	 Using the char Data Type� 53

2.6	� Using the Scanner Class to
Accept Keyboard Input� 57

Pitfall: Using nextLine() Following One of the
Other Scanner Input Methods� 59

2.7	 Using the JOptionPane Class to
Accept GUI Input� 64

Using Input Dialog Boxes� 64

Using Confirm Dialog Boxes� 66

2.8	� Performing Arithmetic Using
Variables and Constants� 68

Associativity and Precedence� 69

Writing Arithmetic Statements Efficiently� 69

iv

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pitfall: Not Understanding Imprecision in
Floating-Point Numbers� 70

2.9	 Understanding Type Conversion� 72
Automatic Type Conversion� 73

Explicit Type Conversion� 73

Don’t Do It� 76

Summary� 77

Key Terms� 77

Review Questions� 78

Programming Exercises� 80

Debugging Exercises� 81

Game Zone� 81

Case Problems� 82

CHAPTER 3

USING METHODS� 83
3.1	 Understanding Method Calls and

Placement� 83

3.2	 Understanding Method
Construction� 86

Access Specifiers� 86

The static Modifier� 87

Return Type� 87

Method Name� 87

Parentheses� 88

3.3	 Adding Parameters to Methods� 91
Creating a Method That Receives a Single
Parameter� 91

Creating a Method That Requires Multiple
Parameters� 94

3.4	 Creating Methods That
Return Values� 95

3.5	 Understanding Blocks and Scope� 99

3.6	 Overloading a Method� 104

3.7	 Learning about Ambiguity� 107

Don’t Do It� 108

Summary� 108

Key Terms� 109

Review Questions� 109

Programming Exercises� 111

Debugging Exercises� 113

Game Zone� 113

Case Problems� 114

CHAPTER 4

USING CLASSES AND OBJECTS� 115
4.1	 Learning About Classes

and Objects� 115

4.2	 Creating a Class� 117

4.3	 Creating Instance Methods
in a Class� 119

4.4	 Declaring Objects and
Using Their Methods� 124

Understanding Data Hiding� 126

4.5	 Understanding That Classes
Are Data Types� 128

4.6	 Creating and Using Constructors� 131
Creating Constructors with Parameters� 132

4.7	 Learning About the this
Reference� 134

Using the this Reference to Make
Overloaded Constructors More Efficient� 137

4.8	 Using static Fields� 139
Using Constant Fields� 140

4.9	 Using Imported, Prewritten
Constants and Methods� 143

The Math Class� 144

Importing Classes That Are Not Imported
Automatically� 145

Using the LocalDate Class� 146

4.10 �Understanding Composition
and Nested Classes� 150

Composition� 150

Nested Classes� 151

Don’t Do It� 153

Summary� 153

Key Terms� 154

Review Questions� 154

Programming Exercises� 156

Debugging Exercises� 158

Game Zone� 158

Case Problems� 159

Contents v

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 5

MAKING DECISIONS� 161
5.1	 Planning Decision-Making Logic� 161
5.2	 The if and if…else Statements� 163
The if Statement� 163

Pitfall: Misplacing a Semicolon in an if Statement� 164

Pitfall: Using the Assignment Operator Instead
of the Equivalency Operator� 165

Pitfall: Attempting to Compare Objects Using
the Relational Operators� 165

The if…else Statement� 166

5.3	� Using Multiple Statements in
if and if…else Clauses� 168

5.4	 Nesting if and if…else
Statements� 172

5.5	 Using Logical AND and OR
Operators� 174

The AND Operator� 174

The OR Operator� 175

Short-Circuit Evaluation� 175

5.6	 Making Accurate and Efficient
Decisions� 178

Making Accurate Range Checks� 178

Making Efficient Range Checks� 180

Using && and || Appropriately� 180

5.7	 Using switch� 181
Using the switch Expression� 183

5.8	 Using the Conditional and NOT
Operators� 186

Using the NOT Operator� 187

5.9	 Understanding Operator
Precedence� 187

5.10 �Making Constructors More
Efficient by Using Decisions in
Other Methods� 189

Don’t Do It� 193

Summary� 193

Key Terms� 194

Review Questions� 194

Programming Exercises� 197

Debugging Exercises� 198

Game Zone� 199

Case Problems� 200

CHAPTER 6

LOOPING� 201
6.1	 Learning About the Loop

Structure� 201
6.2	 Creating while Loops� 202
Writing a Definite while Loop� 202

Pitfall: Failing to Alter the Loop Control Variable
Within the Loop Body� 204

Pitfall: Unintentionally Creating a Loop with
an Empty Body� 204

Altering a Definite Loop’s Control Variable� 206

Writing an Indefinite while Loop� 206

Validating Data� 208

6.3	 Using Shortcut Arithmetic
Operators� 210

6.4	 Creating a for Loop� 214
Variations in for Loops� 215

6.5	� Learning How and When to Use
a do…while Loop� 217

6.6	 Learning About Nested Loops� 220
6.7	 Improving Loop Performance� 223
Avoiding Unnecessary Operations� 223

Considering the Order of Evaluation of
Short-Circuit Operators� 224

Comparing to Zero� 224

Employing Loop Fusion� 226

A Final Note on Improving Loop Performance� 226

Don’t Do It� 228

Summary� 228

Key Terms� 229

Review Questions� 229

Programming Exercises� 232

Debugging Exercises� 233

Game Zone� 234

Case Problems� 235

CHAPTER 7

CHARACTERS, STRINGS, AND
THE StringBuilder� 237
7.1	 Understanding String Data

Problems� 237

7.2	 Using Character Class Methods� 238

vi Contents

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3	 Declaring and Comparing
String Objects� 241

Comparing String Values� 241

Empty and null Strings� 245

7.4	 Using a Variety of String
Methods� 246

Converting String Objects to Numbers� 249

7.5	� Learning About the StringBuilder
and StringBuffer Classes� 253

Don’t Do It� 257

Summary� 258

Key Terms� 258

Review Questions� 258

Programming Exercises� 260

Debugging Exercises� 262

Game Zone� 263

Case Problems� 264

CHAPTER 8

ARRAYS� 267
8.1	 Declaring an Array� 267

8.2	 Initializing an Array� 271

8.3	 Using Variable Subscripts with an
Array� 273

Using the Enhanced for Loop� 275

Using Part of an Array� 275

8.4	 Declaring and Using Arrays
of Objects� 277

Using the Enhanced for Loop with Objects� 279

Manipulating Arrays of Strings� 279

8.5	 Searching an Array and Using
Parallel Arrays� 284

Using Parallel Arrays� 284

Searching an Array for a Range Match� 286

8.6	� Passing Arrays to and Returning
Arrays from Methods� 289

Returning an Array from a Method� 291

8.7	 Sorting Array Elements� 292
Using the Bubble Sort Algorithm� 293

Improving Bubble Sort Efficiency� 295

Sorting Arrays of Objects� 295

Using the Insertion Sort Algorithm� 296

8.8	� Using Two-Dimensional and Other
Multidimensional Arrays� 300

Passing a Two-Dimensional Array to a Method	 302

Using the length Field with a Two-Dimensional
Array� 303

Understanding Jagged Arrays� 304

Using Other Multidimensional Arrays� 304

8.9	 Using the Arrays Class� 307

8.10 Creating Enumerations	 311

Don’t Do It� 316

Summary� 317

Key Terms� 318

Review Questions� 318

Programming Exercises� 320

Debugging Exercises� 323

Game Zone� 323

Case Problems� 327

CHAPTER 9

INHERITANCE AND INTERFACES� 329
9.1	 Learning About the Concept of

Inheritance� 329
Inheritance Terminology� 331

9.2	 Extending Classes� 332

9.3	 Overriding Superclass Methods� 336
Using the @Override Annotation� 337

9.4	 Calling Constructors During
Inheritance� 339

Using Superclass Constructors That Require
Arguments� 340

9.5	 Accessing Superclass Methods� 344
Comparing this and super� 345

9.6	 Employing Information Hiding� 346

9.7	 Methods You Cannot Override� 348
A Subclass Cannot Override static Methods
in Its Superclass� 348

A Subclass Cannot Override final Methods
in Its Superclass� 350

A Subclass Cannot Override Methods in a final
Superclass� 351

9.8	 Creating and Using Abstract
Classes� 352

Contents vii

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.9	 Using Dynamic Method Binding� 359
Using a Superclass as a Method Parameter Type� 360

9.10 �Creating Arrays of Subclass
Objects� 361

9.11 �Using the Object Class and Its
Methods� 364

Using the toString() Method� 364

Using the equals() Method� 366

Overloading equals()� 367

Overriding equals()� 369

9.12 Creating and Using Interfaces	 371
Creating Interfaces to Store Related Constants� 374

9.13 �Using records, Anonymous Inner
Classes, and Lambda Expressions� 377

Using records� 377

Using Anonymous Inner Classes� 379

Using Lambda Expressions� 380

Don’t Do It� 381

Summary� 381

Key Terms� 383

Review Questions� 383

Programming Exercises� 385

Debugging Exercises� 389

Game Zone� 390

Case Problems� 391

CHAPTER 10

EXCEPTION HANDLING� 393
10.1 Learning About Exceptions� 393

10.2 �Trying Code and Catching
Exceptions� 397

Using a try Block to Make Programs “Foolproof”� 400

Declaring and Initializing Variables in try…catch
Blocks� 402

10.3 �Throwing and Catching Multiple
Exceptions� 404

10.4 Using the finally Block� 408

10.5 �Understanding the Advantages
of Exception Handling� 410

10.6 �Specifying the Exceptions That
a Method Can Throw� 412

10.7 �Tracing Exceptions Through the
Call Stack� 415

10.8 �Creating Your Own Exception
Classes� 419

10.9 Using Assertions� 421

10.10 �Displaying the Virtual Keyboard� 430

Don’t Do It� 433

Summary� 434

Key Terms� 434

Review Questions� 435

Programming Exercises� 437

Debugging Exercises� 439

Game Zone� 439

Case Problems� 440

CHAPTER 11

FILE INPUT AND OUTPUT� 441
11.1 Understanding Computer Files� 441

11.2 �Using the Path and Files
Classes� 443

Creating a Path� 443

Retrieving Information About a Path� 444

Converting a Relative Path to an Absolute One� 445

Checking File Accessibility� 446

Deleting a Path� 447

Determining File Attributes� 448

11.3 �File Organization, Streams, and
Buffers� 450

11.4 Using Java’s IO Classes� 452
Writing to a File� 454

Reading from a File� 454

11.5 �Creating and Using Sequential
Data Files� 457

11.6 �Learning About Random Access
Files� 461

11.7 �Writing Records to a Random
Access Data File� 463

11.8 �Reading Records from a Random
Access Data File� 468

Accessing a Random Access File Sequentially� 468

Accessing a Random Access File Randomly� 470

viii Contents

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Don’t Do It� 479

Summary� 479

Key Terms� 480

Review Questions� 480

Programming Exercises� 482

Debugging Exercises� 484

Game Zone� 484

Case Problems� 485

CHAPTER 12

RECURSION� 487
12.1 Understanding Recursion� 487

12.2 �Using Recursion to Solve
Mathematical Problems� 489

Computing Sums� 490

Computing Factorials� 491

12.3 �Using Recursion to Manipulate
Strings� 495

Using Recursion to Separate a Phrase into Words� 495

Using Recursion to Reverse the Characters in a
String� 496

12.4 �Using Recursion to Create Visual
Patterns� 499

12.5 �Recursion’s Relationship to
Iterative Programming� 500

Don’t Do It� 503

Summary� 503

Key Terms� 504

Review Questions� 504

Programming Exercises� 506

Debugging Exercises� 508

Game Zone� 509

Case Problems� 510

CHAPTER 13

COLLECTIONS AND GENERICS� 511
13.1 �Understanding the Collection

Interface� 511

13.2 �Understanding the List
Interface� 513

13.3 Using the ArrayList Class� 514

13.4 Using the LinkedList Class� 524

13.5 Using Iterators� 528

13.6 Creating Generic Classes� 530

13.7 Creating Generic Methods� 532
Creating a Generic Method with More than One
Type Parameter� 533

Don’t Do It� 537

Summary� 538

Key Terms� 538

Review Questions� 539

Programming Exercises� 541

Debugging Exercises� 542

Game Zone� 542

Case Problems� 543

CHAPTER 14

INTRODUCTION TO Swing
COMPONENTS� 545
14.1 �Understanding Swing

Components� 545

14.2 Using the JFrame Class� 547
Customizing a JFrame’s Appearance� 549

14.3 Using the JLabel Class� 552
Changing a JLabel’s Font� 553

14.4 Using a Layout Manager� 555

14.5 Extending the JFrame Class� 557

14.6 �Adding JTextFields and
JButtons to a JFrame� 559

Adding JTextFields to a JFrame� 559

Adding JButtons to a JFrame� 560

14.7 �Learning About Event-Driven
Programming� 563

Preparing Your Class to Accept Event Messages� 564

Telling Your Class to Expect Events to Happen� 564

Telling Your Class How to Respond to Events� 564

Writing an Event-Driven Program� 565

Using Multiple Event Sources� 566

Using the setEnabled() Method� 567

14.8 �Understanding Swing Event
Listeners� 569

Contents ix

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14.9 �Using the JCheckBox,
ButtonGroup, and JComboBox
Classes� 572

The JCheckBox Class� 572

The ButtonGroup Class� 574

The JComboBox Class� 575

Don’t Do It� 580

Summary� 581

Key Terms� 581

Review Questions� 582

Programming Exercises� 584

Debugging Exercises� 585

Game Zone� 585

Case Problems� 586

APPENDIX A

WORKING WITH THE
JAVA PLATFORM� 587

APPENDIX B

DATA REPRESENTATION� 591

APPENDIX C

FORMATTING OUTPUT � 595

APPENDIX D

GENERATING RANDOM
NUMBERS	 603

APPENDIX E

JAVADOC � 607

APPENDIX F

USING JAVAFX AND SCENE
BUILDER� 613
GLOSSARY� 625

INDEX� 641

x Contents

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Java Programming, Tenth Edition provides the beginning programmer with a guide to developing applications
using the Java programming language. Java is popular among professional programmers because it is object-
oriented, making complex problems easier to solve than in some other languages. Java is used for desktop
computing, mobile computing, game development, Web development, and numerical computing.

This course assumes that you have little or no programming experience. It provides a solid background in
good object-oriented programming techniques and introduces terminology using clear, familiar language. The
programming examples are business examples; they do not assume a mathematical background beyond high
school business math. In addition, the examples illustrate only one or two major points; they do not contain so
many features that you become lost following irrelevant and extraneous details. Complete, working programs
appear frequently in each chapter; these examples help students make the transition from the theoretical
to the practical. The code presented in each chapter also can be downloaded from the Cengage website, so
students easily can run the programs and experiment with changes to them.

The student using Java Programming, Tenth Edition builds applications from the bottom up rather than
starting with existing objects. This facilitates a deeper understanding of the concepts used in object-oriented
programming and engenders appreciation for the existing objects students use as their knowledge of the
language advances. When students complete this course, they will know how to modify and create simple Java
programs, and they will have the tools to create more complex examples. They also will have a fundamental
knowledge of object-oriented programming, which will serve them well in advanced Java courses or in studying
other object-oriented languages such as C++, C#, and Visual Basic.

Organization and Coverage
Java Programming, Tenth Edition presents Java programming concepts, enforcing good style, logical thinking,
and the object-oriented paradigm. Objects are covered right from the beginning, earlier than in many other
Java courses. You create your first Java program in Chapter 1. Chapters 2, 3, and 4 increase your understanding
about how data, classes, objects, and methods interact in an object-oriented environment.

Chapters 5 and 6 explore input and repetition structures, which are the backbone of programming logic and
essential to creating useful programs in any language. You learn the special considerations of string and array
manipulation in Chapters 7 and 8.

Chapters 9 and 10 thoroughly cover inheritance, interfaces, and exception handling. Inheritance is the object-
oriented concept that allows you to develop new objects quickly by adapting the features of existing objects,
interfaces define common methods that must be implemented in all classes that use them, and exception
handling is the object-oriented approach to handling errors. All of these are important concepts in object-
oriented design. Chapter 11 provides information about handling files so you can store and retrieve program
output.

Chapter 12 explains recursion, and Chapter 13 covers Java collections and generics. Both are important
programming concepts, and Java provides excellent ways to implement and learn about them. Chapter 14
introduces GUI Swing components, which are used to create visually pleasing, user-friendly, interactive
applications.

PREFACE

xi

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New in This Edition
The following features are new for the Tenth Edition:

❯❯ Java: All programs have been tested using Java 16.

❯❯ Java help: Instructions on searching for Java help have been updated to avoid using specific URLs because new
Java versions are now being released twice a year.

❯❯ Text blocks: Chapter 2 introduces text blocks—a new feature since Java 13.

❯❯ Methods: Methods are covered thoroughly in Chapter 3, including topics such as overloading methods and
avoiding ambiguity. In previous editions, the material was split between chapters.

❯❯ Classes and objects: Classes and objects are covered thoroughly in Chapter 4. In previous editions, the material
was split between chapters.

❯❯ The switch expression: Chapter 5 includes the switch expression, which became a new feature in Java 14.

❯❯ Arrays: Chapter 8 covers beginning and advanced array concepts. In previous editions, this content was split
between chapters.

❯❯ Inheritance and interfaces: Chapter 9 covers inheritance and interfaces. In previous editions, this content was
split between chapters.

❯❯ The record keyword: Chapter 9 also introduces the record keyword, which allows simple classes to be
developed more quickly because a constructor and methods to get and set fields are created automatically
based on field definitions.

❯❯ Recursion: Chapter 12 is a new chapter on recursion. The chapter presents techniques to use to solve
mathematical problems, manipulate strings, and create visual patterns using recursion.

❯❯ Collections and generics: Chapter 13 is a new chapter on collections and generics. The chapter covers the
Collection and List interfaces, the ArrayList and LinkedList classes, Iterators, and generic
classes and methods.

Additionally, Java Programming, Tenth Edition includes the following features:

❯❯ Objectives: Each chapter begins with a list of objectives so you know the topics that will be presented in the
chapter. In addition to providing a quick reference to topics covered, this feature provides a useful study aid.

❯❯ You Do It: In each chapter, step-by-step exercises help students create multiple working programs that
emphasize the logic a programmer uses in choosing statements to include. These sections provide a means for
students to achieve success on their own—even those in online or distance learning classes.

❯❯ Notes: These highlighted tips provide additional information—for example, an alternative method of performing
a procedure, another term for a concept, background information about a technique, or a common error to
avoid.

❯❯ Emphasis on student research: The student frequently is advised to use the Web to investigate Java classes,
methods, and techniques. Computer languages evolve, and programming professionals must understand how to
find the latest language improvements.

❯❯ Figures: Each chapter contains many figures. Code figures are most frequently 25 lines or fewer, illustrating one
concept at a time. Frequent screenshots show exactly how program output appears. Callouts appear where
needed to emphasize a point.

❯❯ Color: The code figures in each chapter contain all Java keywords in blue. This helps students identify keywords
more easily, distinguishing them from programmer-selected names.

❯❯ Files: More than 200 student files can be downloaded from the Cengage website. Most files contain the code
presented in the figures in each chapter; students can run the code for themselves, view the output, and make

Prefacexii

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

changes to the code to observe the effects. Other files include debugging exercises that help students improve
their programming skills.

❯❯ Two Truths & a Lie: A short quiz reviews almost every chapter section, with answers provided. This quiz
contains three statements based on the preceding section of text—two statements are true, and one is false.
Over the years, students have requested answers to problems, but we have hesitated to distribute them in case
instructors want to use problems as assignments or test questions. These true-false quizzes provide students
with immediate feedback as they read, without “giving away” answers to the multiple-choice questions and
programming exercises.

❯❯ Don’t Do It: This section at the end of each chapter summarizes common mistakes and pitfalls that plague new
programmers while learning the current topic.

❯❯ Summary: Following each chapter is a summary that recaps the programming concepts and techniques covered
in the chapter. This feature provides a concise means for students to check their understanding of the main
points in each chapter.

❯❯ Key Terms: Each chapter includes a list of newly introduced vocabulary, shown in alphabetical order. The list of
key terms provides a short review of the major concepts in the chapter.

❯❯ Review Questions: Each chapter includes 20 multiple-choice questions that serve as a review of chapter topics.

❯❯ Programming Exercises: Multiple programming exercises are included with each chapter. These challenge
students to create complete Java programs that solve real-world problems.

❯❯ Debugging Exercises: Four debugging exercises are included with each chapter. These are programs that
contain logic or syntax errors that the student must correct. Besides providing practice in deciphering error
messages and thinking about correct logic, these exercises provide examples of complete and useful Java
programs after the errors are repaired.

❯❯ Game Zone: Each chapter provides one or more exercises in which students can create interactive games
using the programming techniques learned up to that point; 50 game programs are suggested in the course.
The games are fun to create and play; writing them motivates students to master the necessary programming
techniques. Students might exchange completed game programs with each other, suggesting improvements and
discovering alternate ways to accomplish tasks.

❯❯ Cases: Each chapter contains two running case problems. These cases represent projects that continue to
grow throughout a semester using concepts learned in each new chapter. Two cases allow instructors to assign
different cases in alternate semesters or to divide students in a class into two case teams.

❯❯ Glossary: A glossary contains definitions for all key terms in the course.

❯❯ Appendices: This edition includes useful appendices on working with the Java platform, data representation,
formatting output, generating random numbers, creating Javadoc comments, and JavaFX.

❯❯ Quality: Every program example, exercise, and game solution was tested by the author and then tested again by
a quality assurance team.

MindTap Instructor Resources
MindTap activities for Java Programming, Tenth Edition are designed to help students master the skills they need in
today’s workforce. Research shows employers need critical thinkers, troubleshooters, and creative problem-solvers
to stay relevant in our fast-paced, technology-driven world. MindTap helps you achieve this with assignments and
activities that provide hands-on practice and real-life relevance. Students are guided through assignments that help
them master basic knowledge and understanding before moving on to more challenging problems.

All MindTap activities and assignments are tied to defined unit learning objectives. MindTap provides the analytics and
reporting so you can easily see where the class stands in terms of progress, engagement, and completion rates. Use

Preface xiii

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the content and learning path as is or pick and choose how our materials will wrap around yours. You control what
the students see and when they see it. Learn more at http://www.cengage.com/mindtap/.

In addition to the readings, the Java Programming, Tenth Edition MindTap includes the following:

❯❯ Gradeable assessments and activities: All assessments and activities from the readings will be available as
gradeable assignments within MindTap, including Review Questions, Game Zone, Case Problems, and Two
Truths & a Lie.

❯❯ Videos: Each unit is accompanied by videos that help to explain important unit concepts and provide demos on
how students can apply those concepts.

❯❯ Coding Snippets: These short, ungraded coding activities are embedded in the MindTap Reader and provide
students an opportunity to practice new programming concepts “in the moment.” The coding Snippets help
transition the students from conceptual understanding to application of Java code.

❯❯ Coding labs: These assignments provide real-world application and encourage students to practice new coding
skills in a complete online IDE. Guided feedback provides personalized and immediate feedback to students as
they proceed through their coding assignments so that they can understand and correct errors in their code.

❯❯ Interactive study aids: Flashcards and PowerPoint lectures help users review main concepts from the units.

Instructor and Student Resources
Additional instructor and student resources for this product are available online. Instructor assets include an
Instructor’s Manual, Educator’s Guide, PowerPoint® slides, Solution and Answer Guide, solutions, and a test bank
powered by Cognero®. Student assets include data files. Sign up or sign in at www.cengage.com to search for and access
this product and its online resources.

❯❯ Instructor’s Manual: The Instructor’s Manual includes additional instructional material to assist in class
preparation, including sections such as Chapter Objectives, Complete List of Chapter Activities and
Assessments, Key Terms, What’s New In This Chapter, Chapter Outline, Discussion Questions, Suggested Usage
for Lab Activities, Additional Activities and Assignments, and Additional Resources. A sample syllabus also is
available.

❯❯ PowerPoint presentations: The PowerPoint slides can be used to guide classroom presentations, to make
available to students for chapter review, or to print as classroom handouts.

❯❯ Solution and Answer Guide: Solutions to all end-of-chapter assignments are provided along with feedback.

❯❯ Solutions: Solutions to all programming exercises are available. If an input file is needed to run a programming
exercise, it is included with the solution file.

❯❯ Test bank: Cengage Testing Powered by Cognero is a flexible, online system that allows you to:

■■ Author, edit, and manage test bank content from multiple Cengage solutions.

■■ Create multiple test versions in an instant.

■■ Deliver tests from your LMS, your classroom, or wherever you want.

❯❯ Educator’s Guide: The Educator’s Guide contains a detailed outline of the corresponding MindTap course.

❯❯ Transition Guide: The Transition Guide outlines information on what has changed from the Ninth Edition.

❯❯ Data files: Data files necessary to complete some of the steps and projects in the course are available. The Data
Files folder includes Java files that are provided for every program that appears in a figure in the text.

Prefacexiv

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

About the Author
Joyce Farrell has taught computer programming at McHenry County College, Crystal Lake, Illinois; the University of
Wisconsin, Stevens Point, Wisconsin; and Harper College, Palatine, Illinois. Besides Java, she has written books on
programming logic and design, C#, and C++ for Cengage.

Acknowledgments
I would like to thank all of the people who helped to make this project a reality, including Tran Pham, Associate Product
Manager; Mary Convertino, Learning Designer; Maria Garguilo, Senior Content Manager; Dan Seiter, Developmental
Editor, and John Freitas, Quality Assurance Tester. I am lucky to work with these professionals who are dedicated to
producing high-quality instructional materials.

I am also grateful to the reviewers who provided comments and encouragement during this course’s development,
including Dr. Ross Foultz, Coastal Carolina University; and Dr. Carl M. Rebman, Jr., University of San Diego. Also, thank
you to Charles W. Lively III, Ph.D. – Academic Faculty, Georgia Institute of Technology, who provided the appendix on
JavaFX.

Thanks, too, to my husband, Geoff, for his constant support, advice, and encouragement. Finally, this project is
dedicated to Norman Williams Peterson, who has brought a smile to my face every time I have seen him.

Joyce Farrell

Read This Before You Begin
The following information will help you as you prepare to complete this course.

To the User of the Data Files
To complete the steps and projects in this course, you need data files that have been created specifically for some of
the exercises. Your instructor will provide the data files to you. You also can obtain the files electronically by signing
up or signing in at www.cengage.com and then searching for and accessing this product and its online resources. Note
that you can use a computer in your school lab or your own computer to complete the exercises.

Using Your Own Computer
To use your own computer to complete the steps and exercises, you need the following:

❯❯ Software: Java SE 16 or later, available from www.oracle.com/technetwork/java/index.html. Although almost
all of the examples in this course will work with earlier versions of Java, a few require Java 16 or later. You also
need a text editor, such as Notepad. A few exercises ask you to use a browser for research.

❯❯ Hardware: For operating system requirements (memory and disk space), see http://java.com/en/download/
help.

Preface xv

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features
This text focuses on helping students become better programmers and understand Java program development through
a variety of key features. In addition to Chapter Objectives, Summaries, and Key Terms, these useful features will help
students regardless of their learning styles.

You Do It

These sections walk students through program development step by step.

These notes provide additional information—for example, a common error to watch out for or
background information on a topic.Note

Two Truths & a Lie

These quizzes appear after almost every chapter section, with answers provided. Each quiz contains three
statements based on the preceding section of text—two statements are true and one is false.

Answers give immediate feedback without “giving away” answers to the multiple-choice questions and
programming problems later in the chapter. Students also have the option to take these quizzes in MindTap.

Don’t Do It Icon
The Don’t Do It icon illustrates how NOT to do something—for example, having a dead code path in a program. These
icons provide a visual jolt to the student, emphasizing that particular practices are NOT to be emulated and making
students more likely to recognize problems in existing code.

import java.util.Scanner;
public class GetUserInfo2
{
 public static void main(String[] args)
 {
 String name;
 int age;
 Scanner inputDevice = new Scanner(System.in);
 System.out.print("Please enter your age >> ");
 age = inputDevice.nextInt();
 System.out.print("Please enter your name >> ");
 name = inputDevice.nextLine();
 System.out.println("Your name is " + name +
 " and you are " + age + " years old.");
 }
}

If you accept numeric
input prior to string input,
the string input is ignored
unless you take special
action.

Don’t Do It

Prefacexvi

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assessment

Review Questions test student comprehension of the major ideas and techniques presented. Twenty questions follow
each chapter.

Review Questions

Programming Exercises

Programming Exercises provide opportunities to practice concepts. These exercises allow students to explore each
major programming concept presented in the chapter. Additional coding labs and snippets are available in MindTap.

Debugging Exercises

Debugging Exercises are included with each chapter because examining programs critically and closely is a crucial
programming skill. Students and instructors can download these exercises at www.cengage.com.

Game Zone

Game Zone exercises are included at the end of each chapter. Students can create games as an additional entertaining
way to understand key programming concepts.

Case Problems

Case Problems provide opportunities to build more detailed programs that continue to incorporate increasing
functionality throughout the course.

Don’t Do It
These sections at the end of each chapter list advice for avoiding common programming errors.

Preface xvii

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1

Creating Java
Programs

Learning Objectives
When you complete this chapter, you will be able to:

1.1	 Define basic programming terminology

1.2	 Compare procedural and object-oriented programming

1.3	 Describe the features of the Java programming language

1.4	 Analyze a Java application that produces console output

1.5	 Compile a Java class and correct syntax errors

1.6	 Run a Java application and correct logic errors

1.7	 Add comments to a Java class

1.8	 Create a Java application that produces GUI output

1.9	 Identify and consult resources to help develop Java programming skills

1.1 Learning Programming Terminology
You see many computers every day. There might be a laptop on your desk, and there also are computers in
your phone, in your car, and perhaps in your thermostat, washing machine, and vacuum cleaner. When you
learn computer terminology and how to program a computer, you learn a bit about how these devices work,
you develop your critical thinking skills, and you learn to communicate more clearly. You will reap all these
benefits as you work through this course.

Computer systems consist of both hardware and software.

❯❯ Computer equipment, such as a monitor or keyboard, is hardware.

❯❯ Programs are software. A computer program (or simply, program) is a set of instructions that you write
to tell a computer what to do.

1

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Software can be divided into two broad categories:

❯❯ A program that performs a task for a user (such as calculating and producing paychecks, word processing, or
playing a game) is application software. Programs that are application software are called applications, or apps
for short.

❯❯ A program that manages the computer itself (such as Windows or Linux) is system software.

The logic behind any computer program, whether it is an application or system program, determines the exact order of
instructions needed to produce desired results. Much of this course describes how to develop the logic for application
software.

You can write computer programs in high- or low-level programming languages:

❯❯ A high-level programming language such as Java, Visual Basic, C++, or C# allows you to use English-like, easy-
to-remember terms such as read, write, and add.

❯❯ A low-level programming language corresponds closely to a computer’s circuitry and is not as easily read or
understood. Because they correspond to circuitry, low-level languages must be customized for every type of
machine on which a program runs.

All computer programs, even high-level language programs, ultimately are converted to the lowest-level language,
which is machine language. Machine language, or machine code, is the most basic set of instructions that a computer
can execute. Each type of processor (the internal hardware that handles computer instructions) has its own set of
machine language instructions. Programmers often describe machine language using 1s and 0s to represent the on-
and-off circuitry of computer systems.

The system that uses only 1s and 0s is the binary numbering system. Appendix B describes the binary
system in detail. Later in this chapter, you will learn that bytecode is the name for the binary code created
when Java programs are converted to machine language.

Note

Whether you use a compiler or interpreter often depends on the programming language you use.
For example, C++ is a compiled language, and Visual Basic is an interpreted language. Each type of
translator has its supporters; programs written in compiled languages execute more quickly, whereas
programs written in interpreted languages can be easier to develop and debug. Java uses the best of
both technologies: a compiler to translate your programming statements and an interpreter to read the
compiled code line by line when the program executes (also called at run time).

Note

Every programming language has its own syntax, or rules about how language elements are combined correctly to
produce usable statements. For example, depending on the specific high-level language, you might use the verb print
or write to produce output. All languages have a specific, limited vocabulary (the language’s keywords) and a specific
set of rules for using that vocabulary. When you are learning a computer programming language, such as Java, C++, or
Visual Basic, you are learning the vocabulary and syntax for that language.

Using a programming language, programmers write a series of program statements, which are similar to English
sentences. The statements carry out the program’s tasks. Program statements are also known as commands because
they are orders to the computer, such as Output this word or Add these two numbers.

After the program statements are written in a high-level programming language, a computer program called a compiler
or interpreter translates the statements into machine language. A compiler translates an entire program before carrying
out any statements, or executing them, whereas an interpreter translates one program statement at a time, executing
a statement as soon as it is translated.

Chapter 1 Creating Java Programs2

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Compilers and interpreters issue one or more error messages each time they encounter an invalid program statement—
that is, a statement containing a syntax error, or misuse of the language. Examples of syntax errors include misspelling
a keyword or omitting a word that a statement requires. When a syntax error is detected, the programmer can correct
the error and attempt another translation. Repairing all syntax errors is the first part of the process of debugging a
program—freeing the program of all flaws or errors, also known as bugs. Figure 1-1 illustrates the steps a programmer
takes while developing an executable program. You will learn more about debugging Java programs later in this chapter.

Figure 1-1 The program development process

De
bu

gg
in

g
pr

oc
es

s

De
bu

gg
in

g
pr

oc
es

s

Yes

Yes

No

No

Use translating software (a compiler or
interpreter) that translates programming
language statements to machine language

Examine list of
syntax errors

Write program language statements
that correspond to the logic

Examine
program output

Are there runtime
or output errors?

Can all statements
be successfully
translated?

Plan program logic

Execute the program

As Figure 1-1 shows, you might write a program that compiles successfully (that is, it contains no syntax errors), but
it still might not be a correct program because it might contain one or more logic errors. A logic error is a bug that
allows a program to run, but that causes it to operate incorrectly. Correct logic requires that all the right commands
be issued in the appropriate order. Examples of logic errors include multiplying two values when you meant to divide
them or producing output prior to obtaining the appropriate input. When you develop a program of any significant
size, you should plan its logic before you write any program statements.

Correcting logic errors is much more difficult than correcting syntax errors. Syntax errors are discovered by the
language translator when you compile a program, but a program can be free of syntax errors and execute while still

1.1 Learning Programming Terminology 3

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

retaining logic errors. Sometimes you can find logic errors by carefully examining the structure of your program (when
a group of programmers do this together, it is called a structured walkthrough), but sometimes you can identify logic
errors only when you examine a program’s output. For example, if you know an employee’s paycheck should contain
the value $4,000, but when you examine a payroll program’s output you see that it holds $40, then a logic error has
occurred. Perhaps an incorrect calculation was performed, or maybe the hours-worked value was output by mistake
instead of the net pay value. When output is incorrect, the programmer must carefully examine all the statements
within the program, revise or move the offending statements, and translate and test the program again.

Just because a program produces correct output does not mean it is free from logic errors. For example,
suppose that a program should multiply two values entered by the user, that the user enters two 2s, and
that the output is 4. The program might actually be adding the values by mistake. The programmer would
discover the logic error only by entering different values, such as 5 and 7, and examining the result.

Note

Programmers call some logic errors semantic errors. For example, if you misspell a programming
language word, you commit a syntax error, but if you use a correct word in the wrong context, you
commit a semantic error.

Note

The false statement is #3. A language translator finds syntax errors, but logic errors can still exist in a program that
is free of syntax errors.

Two Truths & a Lie   Learning Programming Terminology

In each “Two Truths & a Lie” section, two of the numbered statements are true, and one is false. Identify the false
statement and explain why it is false.

1.	 Unlike a low-level programming language, a high-level programming language allows you to use
a vocabulary of reasonable terms instead of the sequences of on-and-off switches that perform the
corresponding tasks.

2.	 A syntax error occurs when you violate the rules of a language; locating and repairing all syntax errors is
part of the process of debugging a program.

3.	 Logic errors are fairly easy to find because the software that translates a program finds all the logic errors for you.

1.2 �Comparing Procedural and Object-Oriented
Programming Concepts

All computer programmers must deal with syntax errors and logical errors in much the same way, but they might take
different approaches to the entire programming process. Procedural programming and object-oriented programming
describe two different approaches to writing computer programs.

Procedural Programming
Procedural programming is a style of programming in which operations are executed one after another in sequence.

Chapter 1 Creating Java Programs4

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The typical procedural program defines and uses named computer memory locations; each of these named locations
that can hold data is called a variable. For example, data might be read from an input device and stored in a location
the programmer has named rateOfPay. The variable value might be used in an arithmetic statement, used as the
basis for a decision, sent to an output device, or have other operations performed with it. The data stored in a variable
can change, or vary, during a program’s execution.

For convenience, the individual operations used in a computer program are often grouped into logical units called
procedures. For example, a series of four or five comparisons and calculations that together determine a person’s
federal withholding tax value might be grouped as a procedure named calculateFederalWithholding(). (As a
convention, this course will show parentheses following every procedure name.) As a procedural program executes
its statements, it can sometimes pause to call a procedure. When a program calls a procedure, the current logic is
temporarily suspended so that the procedure’s commands can execute. A single procedural program might contain any
number of procedure calls. Procedures are also called modules, methods, functions, and subroutines. Users of different
programming languages tend to use different terms. As you will learn later in this chapter, Java programmers most
frequently use the term method.

Object-Oriented Programming
Object-oriented programming is an extension of procedural programming in which you take a slightly different approach
to writing computer programs. Writing object-oriented programs involves the following:

❯❯ Creating classes, which are blueprints for objects

❯❯ Creating objects, which are specific instances of those classes

❯❯ Creating applications that manipulate or use those objects

Programmers use OO as an abbreviation for object-oriented; it is pronounced oh oh. Object-oriented
programming is abbreviated OOP, and pronounced to rhyme with soup.Note

Originally, object-oriented programming was used most frequently for two major types of applications:

❯❯ Computer simulations, which attempt to mimic real-world activities so that their processes can be improved or
so that users can better understand how the real-world processes operate

❯❯ Graphical user interfaces (GUIs), pronounced gooeys, which allow users to interact with a program in a graphical
environment

Thinking about objects in these two types of applications makes sense. For example, a city might want to develop a
program that simulates traffic patterns and controls traffic signals to help prevent tie-ups. Programmers would create
classes for objects such as cars and pedestrians that contain their own data and rules for behavior. For example, each
car has a speed and a method for changing that speed. The specific instances of cars could be set in motion to create
a simulation of a real city at rush hour.

Creating a GUI environment for users is also a natural use for object orientation. It is easy to think of the components
a user manipulates on a computer screen, such as buttons and scroll bars, as similar to real-world objects. Each
GUI object contains data—for example, a button on a screen has a specific size and color. Each object also contains
behaviors—for example, each button can be clicked and reacts in a specific way when clicked. Some people consider
the term object-oriented programming to be synonymous with GUI programming, but object-oriented programming
means more. Although many GUI programs are object oriented, not all object-oriented programs use GUI objects.
Modern businesses use object-oriented design techniques when developing all sorts of business applications, whether
they are GUI applications or not. Early in this course, you will learn object-oriented techniques that are appropriate
for any program type; in the last chapters, you will apply what you have learned about those techniques specifically
to GUI applications.

1.2 Comparing Procedural and Object-Oriented Programming Concepts 5

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding object-oriented programming requires grasping three basic concepts:

❯❯ Encapsulation as it applies to classes as objects

❯❯ Inheritance

❯❯ Polymorphism

Understanding Classes, Objects, and Encapsulation
In object-oriented terminology, a class is a group or collection of objects with common properties. In the same way
that a blueprint exists before any houses are built from it, and a recipe exists before any cookies are baked from it, a
class definition exists before any objects are created from it. A class definition describes what attributes its objects
will have and what those objects will be able to do. Attributes are the characteristics that define an object; they are
properties of the object. When you learn a programming language such as Java, you learn to work with two types of
classes: those that have already been developed by the language’s creators and your own new, customized classes.

An object is a specific, concrete instance of a class. Creating an instance is called instantiation. You can create objects
from classes that you write and from classes written by other programmers, including Java’s creators. The values
contained in an object’s properties often differentiate instances of the same class from one another. For example, the
class Automobile describes what Automobile objects are like. Some properties of the Automobile class are
make, model, year, and color. Each Automobile object possesses the same attributes, but not necessarily the same
values for those attributes. One Automobile might be a 2014 white Honda Civic, and another might be a 2021 red
Chevrolet Camaro. Similarly, your dog has the properties of all Dogs, including a breed, name, age, and whether the
dog’s shots are current. The values of the properties of an object are referred to as the object’s state. In other words,
you can think of objects as roughly equivalent to nouns (words that describe a person, place, or thing), and of their
attributes as similar to adjectives that describe the nouns.

When you understand an object’s class, you understand the characteristics of the object. If your friend purchases an
Automobile, you know it has a model name, and if your friend gets a Dog, you know the dog has a breed. Knowing
what attributes exist for classes allows you to ask appropriate questions about the states or values of those attributes.
For example, you might ask how many miles the car gets per gallon, but you would not ask whether the car has had
shots. Similarly, in a GUI operating environment, you expect each component to have specific, consistent attributes and
methods, such as a window having a title bar and a close button, because each component gains these properties as a
member of the general class of GUI components. Figure 1-2 shows the relationship of some Dog objects to the Dog class.

By convention, programmers using Java begin their class names with an uppercase letter. Thus, the class
that defines the attributes and methods of an automobile probably would be named Automobile, and
the class for dogs probably would be named Dog. This convention, however, is not required to produce a
workable program.

Note

Besides defining properties, classes define methods their objects can use. A method is a self-contained block of
program code that carries out some action, similar to a procedure in a procedural program. An Automobile, for
example, might have methods for moving forward, moving backward, and determining the status of its gas tank.
Similarly, a Dog might have methods for walking, eating, and determining its name, and a program’s GUI components
might have methods for maximizing and minimizing them as well as determining their size. In other words, if objects
are similar to nouns, then methods are similar to verbs.

In object-oriented classes, attributes and methods are encapsulated into objects. Encapsulation refers to two closely
related object-oriented notions:

❯❯ Encapsulation is the enclosure of data and methods within an object. Encapsulation allows you to treat all of an
object’s methods and data as a single entity. Just as an actual dog contains all of its attributes and abilities, so
would a program’s Dog object.

Chapter 1 Creating Java Programs6

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

❯❯ Encapsulation also refers to the concealment of an object’s data and methods from outside sources. Concealing
data is sometimes called information hiding, and concealing how methods work is implementation hiding; you
will learn more about both terms as you learn more about classes and objects. Encapsulation lets you hide
specific object attributes and methods from outside sources and provides the security that keeps data and
methods safe from inadvertent changes.

If an object’s methods are well written, the user can be unaware of the low-level details of how the methods are
executed, and the user must simply understand the interface or interaction between the method and the object. For
example, if you can fill your Automobile with gasoline, it is because you understand the interface between the gas
pump nozzle and the vehicle’s gas tank opening. You don’t need to understand how the pump works mechanically
or where the gas tank is located inside your vehicle. If you can read your speedometer, it does not matter how the
displayed value is calculated. As a matter of fact, if someone produces a superior, more accurate speed-determining
device and inserts it in your Automobile, you don’t have to know or care how it operates, as long as your interface
remains the same. The same principles apply to well-constructed classes used in object-oriented programs—programs
that use classes only need to work with interfaces.

Understanding Inheritance and Polymorphism
An important feature of object-oriented program design that differentiates it from procedural program design is
inheritance—the ability to create classes that share the attributes and methods of existing classes, but with more
specific features. For example, Automobile is a class, and all Automobile objects share many traits and abilities.
Convertible is a class that inherits from the Automobile class; a Convertible is a type of Automobile that has
and can do everything a “plain” Automobile does—but with an added ability to lower its top. (In turn, Automobile
inherits from the Vehicle class.) Convertible is not an object—it is a class. A specific Convertible is an object—
for example, my1967BlueMustangConvertible.

Inheritance helps you understand real-world objects. For example, the first time you encounter a convertible, you
already understand how the ignition, brakes, door locks, and other systems work because you realize that a convert-
ible is a type of automobile. Therefore, you need to be concerned only with the attributes and methods that are “new”
with a convertible. The advantages in programming are the same—you can build new classes based on existing classes
and concentrate on the specialized features you are adding.

A final important concept in object-oriented terminology (that does not exist in procedural programming terminology)
is polymorphism. Literally, polymorphism means many forms—it describes the feature of languages that allows the

Figure 1-2 Dog class definition and some objects created from it

Dog class de�nition Dog class instances (objects)

Every Dog that is
created will have a:

Ginger
6
Akita
Up to date

Bowser
2
Retriever
Up to date

Roxy
1
Beagle
Up to date

Name

Age

Breed

Shot status

is
to

ck
.c

om
/G

lo
b

al
P

is
to

ck
.c

om
/G

lo
b

al
P

is
to

ck
.c

om
/o

la
se

r

1.2 Comparing Procedural and Object-Oriented Programming Concepts 7

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

same word or symbol to be interpreted correctly in different situations based on the context. For example, although the
classes Automobile, Sailboat, and Airplane all inherit from Vehicle, methods such as turn() and stop()
work differently for instances of those classes. The advantages of polymorphism will become more apparent when you
begin to create GUI applications containing features such as windows, buttons, and menu bars. In a GUI application,
it is convenient to remember one method name, such as setColor() or setHeight(), and have it work correctly
no matter what type of object you are modifying.

When you see a plus sign (+) between two numbers, you understand they are being added. When you
see it carved in a tree between two names, you understand that the names are linked romantically.
Because the symbol has diverse meanings based on context, it is polymorphic. Later in this course, you
will learn more about inheritance and polymorphism and how they are implemented in Java. Using Java,
you can write either procedural or object-oriented programs. In this course, you will learn about how to
do both.

Note

The false statement is #3. Inheritance is the ability to create classes that share the attributes and methods of
existing classes, but with more specific features; polymorphism describes the ability to use one term to cause
multiple actions.

Two Truths & a Lie   Comparing Procedural and Object-Oriented Programming Concepts

1.	 An instance of a class is a created object that possesses the attributes and methods described in the class
definition.

2.	 Encapsulation protects data by hiding it within an object.

3.	 Polymorphism is the ability to create classes that share the attributes and methods of existing classes, but
with more specific features.

1.3 Features of the Java Programming Language
Java was developed by Sun Microsystems as an object-oriented language for general-purpose business
applications and for interactive, World Wide Web-based Internet applications. (Sun was later acquired by Oracle
Corporation.) Some of the advantages that make Java a popular language are its security features and the fact
that it is architecturally neutral. In other words, unlike many other languages, you can use Java to write a program
that runs on any operating system (such as Windows, macOS, or Linux) or any device (such as PCs, phones, and
tablet computers).

Java can be run on a wide variety of computers and devices because it does not execute instructions on a computer
directly. Instead, Java runs on a hypothetical computer known as the Java Virtual Machine (JVM). When programmers
call the JVM hypothetical, they mean it is not a physical entity created from hardware, but is composed only of
software.

Figure 1-3 shows the Java environment. Programming statements written in a high-level programming language
are source code. When you write a Java program, you first construct the source code using a plain text editor
such as Notepad, or you can use a development environment such as Eclipse, NetBeans, or JDeveloper.
A development environment is a set of tools that help you write programs by providing such features as
displaying a language’s keywords in color.

Chapter 1 Creating Java Programs8

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you write a Java program, the following steps take place:

❯❯ The Java source code statements you write are saved in a file.

❯❯ The Java compiler converts the source code into a binary program of bytecode.

❯❯ A program called the Java interpreter then checks the bytecode and communicates with the operating system,
executing the bytecode instructions line by line within the JVM.

Because the Java program is isolated from the operating system, it is also insulated from the particular hardware on
which it is run. Because of this insulation, the JVM provides security against intruders accessing your computer’s
hardware through the operating system. Therefore, Java is more secure than other languages. Another advantage
provided by the JVM means less work for programmers—when using other programming languages, software vendors
usually have to produce multiple versions of the same product (a Windows version, Macintosh version, UNIX version,
Linux version, and so on) so all users can run the program. With Java, one program version runs on all these platforms.
“Write once, run anywhere” (WORA) is the slogan developed by Sun Microsystems to describe the ability of one Java
program version to work correctly on multiple platforms.

Java also is simpler to use than many other object-oriented languages. Java is modeled after C++. Although neither
language is easy to read or understand on first exposure, Java does eliminate some of the most difficult-to-understand
features in C++, such as pointers and multiple inheritance.

You can write two types of Java applications:

❯❯ Console applications, which support character or text output to a computer screen

❯❯ Windowed applications, which create a GUI with elements such as menus, toolbars, and dialog boxes

Figure 1-3 The Java environment

Java Source Code

Source code is
stored on a disk in
a �le with a name

ending in .java

Compiler creates
bytecode that
is stored on a

disk in a �le with
a name ending in

.class

JVM (named java.exe)
performs security checks
and translates bytecode to
machine language, which

executes

Java Compiler

Java Virtual Machine

Java Interpreter

Computer Operating
System

1.3 Features of the Java Programming Language 9

Copyright 2023 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

