

Numerical Methods
for Engineers and Scientists
An Introduction with
Applications using MATLAB®

Third Edition

Amos Gilat
Vish Subramaniam
Department of Mechanical Engineering
The Ohio State University

Publisher: Don Fowley
Acquisition Editor: Linda Ratts
Editorial Assistant: Hope Ellis
Cover Designer: Wendy Lai
Associate Production Manager: Joyce Poh

Cover Image: The image on the cover shows a numerical simulation of an aluminum projectile penetrating a
composite plate. Courtesy of Dr. Kelly Carney, NASA Glenn Research Center, Cleveland, Ohio

This book was set in Times Roman by the authors. Printed and bound by R.R. Donnelley. The cover was printed by
R.R. Donnelley. This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a
foundation of principles that include responsibility to the communities we serve and where we live and work. In
2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic,
and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper
specifications and procurement, ethical conduct within our business and among our vendors, and community and
charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright � 2014, 2011 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923,
website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-
6008, website http://www.wiley.com/go/ permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
 Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of
charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this
textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the United
States, please contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Gilat, Amos.
 Numerical methods for engineers and scientists : an introduction with applications using matlab / Amos Gilat, Vish
Subramaniam, Department of Mechanical Engineering, the Ohio State University. -- Third edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-118-55493-7 (cloth)
 1. MATLAB. 2. Numerical analysis--Data processing. 3. Engineering mathematics. I. Subramaniam, Vish. II.
Title.
 QA297.G49 2014
 518.0285'53--dc23
 2013016217

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

iii

Preface
This textbook is intended for a first course in numerical methods for
students in engineering and science, typically taught in the second year
of college. The book covers the fundamentals of numerical methods
from an applied point of view. It explains the basic ideas behind the var-
ious methods and shows their usefulness for solving problems in engi-
neering and science.

In the past, a numerical methods course was essentially mathemati-
cal, emphasizing numerical analysis and theory. More recently, due to
the availability of powerful desktop computers and computing software
that is both affordable and powerful, the content and nature of a first
course in numerical methods for engineering and science students are
changing. The emphasis is shifting more and more toward applications
and toward implementing numerical methods with ready-to-use tools.
In a typical course, students still learn the fundamentals of numerical
methods. In addition, however, they learn computer programming (or
improve their programming skills if they have already been introduced
to programming), and use advanced software as a tool for solving prob-
lems. MATLAB is a good example of such software. It can be used by
students to write their own programs, and can be used as a tool for solv-
ing problems using its built-in functions. One of the objectives of a
course in numerical methods is to prepare students in science and engi-
neering for future courses in their areas of specialization (and their
future careers) where they will have to use computers for solving prob-
lems.

Main objectives of the book

To teach the fundamentals of numerical methods, with
emphasis on the most essential methods.

To provide students with the opportunity to enhance their pro-
gramming skills using the MATLAB environment to implement
algorithms.

To teach the use of MATLAB as a tool (using its built-in func-
tions) for solving problems in science and engineering, and
for checking the results of any programs students write them-
selves.

iv Preface

Features/pedagogy of the book
• This book is written in simple, clear, and direct language. Fre-

quently, bullets and a list of steps, rather than lengthy text, are used
to list facts and details of a specific subject.

• Numerous illustrations are used for explaining the principles of the
numerical methods.

• Many of the examples and end-of-chapter problems involve realis-
tic problems in science and engineering.

• MATLAB is integrated within the text and in the examples. A light
colored background is used when MATLAB syntax is displayed.

• Annotating comments that explain the commands are posted along-
side the MATLAB syntax.

• MATLAB’s built-in functions that are associated with the numeri-
cal methods are presented in detail.

• The homework problems at the end of the chapters are divided into
three groups:

(a) Problems to be solved by hand: Problems related to improving
understanding of numerical methods. In these problems the stu-
dents are asked to answer questions related to the fundamentals of
numerical methods, and to carry out a few steps of the numerical
methods by hand.

(b) Problems to be programmed in MATLAB: Problems designed to
provide the opportunity to improve programming skills. In these
problems students are asked to use MATLAB to write computer
programs (script files and user-defined functions) implementing
various numerical methods.

(c) Problems in math, science, and engineering: Problems in science
and engineering that have to be solved by using numerical methods.
The objective is to train the students to use numerical methods for
solving problems they can expect to see in future courses or in prac-
tice. Students are expected to use the programs that are presented in
the book, programs that they write, and the built-in functions in
MATLAB.

Organization of the book
Chapter 1: The first chapter gives a general introduction to numerical
methods and to the way that computers store numbers and carry out
numerical operations. It also includes a section on errors in numerical
solutions and a section on computers and programming.
Chapter 2: The second chapter presents a review of fundamental math-
ematical concepts that are used in the following chapters that cover the
numerical methods. It is intended to be used as a reminder, or a
refresher, of concepts that the students are assumed (expected) to be

 Preface v

familiar with from their first- and second-year mathematics courses.
Since many of these topics are associated with various numerical meth-
ods, we feel that it is better to have the mathematical background gath-
ered in one chapter (and easier to find when needed) rather than be
dispersed throughout the book. Several of the topics that are covered in
Chapter 2 and that are essential in the explanation of a numerical
method are repeated in other chapters where the numerical methods are
presented. Most instructors will probably choose not to cover Chapter 2
as one unit in the class, but will mention a topic when needed and refer
the students to the chapter.
Chapters 3 through 11: These nine chapters present the various numer-
ical methods in an order that is typically followed in a first course on
numerical methods. These chapters follow the format explained next.
Organization of a typical chapter
An itemized list of the topics that are covered in the chapter is displayed
below the title of the chapter. The list is divided into core and
complementary topics. The core topics are the most essential topics
related to the subject of the chapter. The complementary topics include
more advanced topics. Obviously, a division of topics related to one
subject into core and complementary is subjective. The intent is to help
instructors in the design of their course when there is not enough time to
cover all the topics. In practicality, the division can be ignored in
courses where all the topics are covered.

The first section of the chapter provides a general background with
illustrative examples of situations in the sciences and engineering
where the methods described in the chapter are used. This section also
explains the basic ideas behind the specific class of numerical methods
that are described in the chapter. The following sections cover the core
topics of the chapter. Next, a special section discusses the built-in func-
tions in MATLAB that implement the numerical methods described in
the chapter, and how they may be used to solve problems. The later sec-
tions of the chapter cover the complementary topics.
The order of topics
It is probably impossible to write a text book where all the topics follow
an order that is agreed upon by all instructors. In the present book, the
main subjects are in an order that is typical in a first course in numerical
methods. Chapter 3 covers solution of nonlinear equations. It mostly
deals with the solution of a single equation, which is a simple applica-
tion of numerical methods. The chapter also includes, as a complemen-
tary topic, a section on the solution of a system of nonlinear equations.
Chapter 4 deals with the solution of a system of linear equations. Next,
Chapter 5 deals with eigenvalues and eigenvectors, and Chapter 6 cov-
ers curve fitting and interpolation. Chapter 7, which is new in the 3rd
edition, covers an introduction to Fourier methods. Chapters 8 and 9

vi Preface

cover differentiation and integration, respectively. Finally, solution of
ordinary differential equations (ODE) is presented in the last two chap-
ters. Chapter 10 deals with the solution of initial-value problems (first-
order, systems, and higher-order) and Chapter 11 considers boundary-
value problems.

The order of some of the topics is dictated by the subjects them-
selves. For example, differentiation and integration need to be covered
before ordinary differential equations. It is possible, however, to cover
the other subjects in different order than presented in the book. The var-
ious chapters and sections in the book are written in a self-contained
manner that make it easy for the instructor to cover the subjects in a dif-
ferent order, if desired.
MATLAB programs
This book contains many MATLAB programs. The programs are
clearly identified as user-defined functions, or as script files. All the
programs are listed in Appendix B. The programs, or the scripts, are
written in a simple way that is easy to follow. The emphasis of these
programs is on the basics and on how to program an algorithm of a spe-
cific numerical method. Obviously, the programs are not general, and
do not cover all possible circumstances when executed. The programs
are not written from the perspective of being shortest, fastest, or most
efficient. Rather, they are written such that they are easy to follow. It is
assumed that most of the students have only limited understanding of
MATLAB and programming, and presenting MATLAB in this manner
will advance their computing skills. More advanced users of MATLAB
are encouraged to write more sophisticated and efficient programs and
scripts, and compare their performance with the ones in the book.
Third edition
The main changes in the third edition are:
Fourier Methods: In response to many requests from professors that
use the book in their courses, a new chapter (Chapter 7) on Fourier
methods has been added to the book. The chapter covers Fourier series,
discrete Fourier series, Discrete Fourier Transform, and an introduction
to the Fast Fourier Transform (FFT) which are widely used in engineer-
ing for processing digital data.
Eignvalues and Eignvectors: This topic which was part of Chapter 4
(Solving a System of Linear Equations) in the first two editions of the
book is now covered in a separate chapter.
MATLAB: The third edition of the book is updated to MATLAB
R2012b. All the programs use anonymous functions and function han-
dles are used for passing functions into functions. Appendix A has been
updated to the current version of MATLAB.
Homework problems: About 50% of the problems have been added
or changed. Most of the Chapters have 40 or more problems.

 Preface vii

Support material
The following is available on the instructor companion site at
www.wiley.com/college/gilat):
(a) for faculty who have adopted the text for use in their course, a fully

worked solution manual, triple checked for accuracy.
(b) suggested course syllabi with suggested assignments to help

quickly integrate the text into your course.
(c) conversion guides from other major numerical methods titles to

show where each section of your current text is covered in this new
text, helping you quickly convert from old to new.

(d) electronic versions of all the figures and tables from the text, for
creating lecture slides and quizzes/exams based on images from the
book.

(e) m-files of all the programs in the text.
Many people have assisted during the preparation of the first two

editions of the book. We would like to thank the reviewers and users for
the many comments and suggestions they have made.
Lawrence K. Agbezuge, Rochester Institute of Technology
David Alciatore, Colorado State University
Salame Amr, Virginia State University
John R. Cotton, Virginia Polytechnic Institute and State University
David Dux, Purdue University
Venkat Ganesan, University of Texas-Austin
Michael R. Gustafson II, Duke University
Alain Kassab, University of Central Florida
Tribikram Kundu, University of Arizona
Ronald A. Mann, University of Louisville
Peter O. Orono, Indiana University Purdue University Indianapolis
Charles Ritz, California State Polytechnic University-Pomona
Douglas E. Smith, University of Missouri-Columbia
Anatoliy Swishchuk, University of Calgary
Ronald F. Taylor, Wright State University
Brian Vick, Virginia Polytechnic Institute and State University
John Silzel, Biola University
James Guilkey, University of Utah

We would also like to thank Linda Ratts, acquisition editor, and
Renata Marchione, editorial assistant, from Wiley. Special thanks to
Professor Subramaniam’s daughters, Sonya and Priya, for typing early
drafts of some chapters and for proofreading them.

Our intention was to write a book that is useful to students and
instructors alike. We would like to thank users of previous editions of
the book who have sent us compliments and suggestions. We would
appreciate any comments that will help to improve future editions.

Amos Gilat (gilat.1@osu.edu)
Vish Subramaniam (subramaniam.1@osu.edu)
Columbus, Ohio
June 2013

http://www.wiley.com/college/gilat
mailto:gilat.1@osu.edu
mailto:subramaniam.1@osu.edu

To Yaela, Taly, and Edan

To my parents, Dr. K. S. Venkateswaran & Seethalakshmy Venkateswaran,
and Deepa, Priya, and Sonya

ix

Brief Table of Contents
Preface iii

Chapter 1 Introduction 1

Chapter 2 Mathematical Background 23

Chapter 3 Solving Nonlinear Equations 57

Chapter 4 Solving a System of Linear Equations 99

Chapter 5 Eigenvalues and Eigenvectors 165

Chapter 6 Curve Fitting and Interpolation 193

Chapter 7 Fourier Methods 251

Chapter 8 Numerical Differentiation 303

Chapter 9 Numerical Integration 341

Chapter 10 Ordinary Differential Equations: Initial–Value
Problems 385

Chapter 11 Ordinary Differential Equations: Boundary–Value
Problems 471

Appendix A Introductory MATLAB 509

Appendix B MATLAB Programs 547

Appendix C Derivation of the Real Discrete Fourier Transform
(DFT) 551

Index 555

xi

Contents
Preface iii

Chapter 1 Introduction 1
1.1 Background 1
1.2 Representation of Numbers on a Computer 4
1.3 Errors in Numerical Solutions 10

1.3.1 Round-Off Errors 10
1.3.2 Truncation Errors 13
1.3.3 Total Error 14

1.4 Computers and Programming 15
1.5 Problems 18

Chapter 2 Mathematical Background 23
2.1 Background 23
2.2 Concepts from Pre-Calculus and Calculus 24
2.3 Vectors 28

2.3.1 Operations with Vectors 30
2.4 Matrices and Linear Algebra 32

2.4.1 Operations with Matrices 33
2.4.2 Special Matrices 35
2.4.3 Inverse of a Matrix 36
2.4.4 Properties of Matrices 37
2.4.5 Determinant of a Matrix 37
2.4.6 Cramer’s Rule and Solution of a System of Simultaneous Linear Equations 38
2.4.7 Norms 40

2.5 Ordinary Differential Equations (ODE) 41
2.6 Functions of Two or More Independent Variables 44

2.6.1 Definition of the Partial Derivative 44
2.6.2 Chain Rule 45
2.6.3 The Jacobian 46

2.7 Taylor Series Expansion of Functions 47
2.7.1 Taylor Series for a Function of One Variable 47
2.7.2 Taylor Series for a Function of Two Variables 49

2.8 Inner Product and Orthogonality 50
2.9 Problems 51

xii Contents

Chapter 3 Solving Nonlinear Equations 57
3.1 Background 57
3.2 Estimation of Errors in Numerical Solutions 59
3.3 Bisection Method 61
3.4 Regula Falsi Method 64
3.5 Newton’s Method 66
3.6 Secant Method 71
3.7 Fixed-Point Iteration Method 74
3.8 Use of MATLAB Built-In Functions for Solving Nonlinear Equations 77

3.8.1 The fzero Command 78
3.8.2 The roots Command 79

3.9 Equations with Multiple Solutions 79
3.10 Systems of Nonlinear Equations 81

3.10.1 Newton’s Method for Solving a System of Nonlinear Equations 82
3.10.2 Fixed-Point Iteration Method for Solving a System of Nonlinear Equations 86

3.11 Problems 88

Chapter 4 Solving a System of Linear Equations 99
4.1 Background 99

4.1.1 Overview of Numerical Methods for Solving a System of Linear Algebraic Equations 100
4.2 Gauss Elimination Method 102

4.2.1 Potential Difficulties When Applying the Gauss Elimination Method 110
4.3 Gauss Elimination with Pivoting 112
4.4 Gauss–Jordan Elimination Method 115
4.5 LU Decomposition Method 118

4.5.1 LU Decomposition Using the Gauss Elimination Procedure 120
4.5.2 LU Decomposition Using Crout’s Method 121
4.5.3 LU Decomposition with Pivoting 128

4.6 Inverse of a Matrix 128
4.6.1 Calculating the Inverse with the LU Decomposition Method 129
4.6.2 Calculating the Inverse Using the Gauss–Jordan Method 131

4.7 Iterative Methods 132
4.7.1 Jacobi Iterative Method 133
4.7.2 Gauss-Seidel Iterative Method 133

4.8 Use of MATLAB Built-In Functions for Solving a System of Linear Equations 136
4.8.1 Solving a System of Equations Using MATLAB’s Left and Right Division 136
4.8.2 Solving a System of Equations Using MATLAB’s Inverse Operation 137
4.8.3 MATLAB’s Built-In Function for LU Decomposition 138
4.8.4 Additional MATLAB Built-In Functions 139

4.9 Tridiagonal Systems of Equations 141

 Contents xiii

4.10 Error, Residual, Norms, and Condition Number 146
4.10.1 Error and Residual 146
4.10.2 Norms and Condition Number 148

4.11 Ill-Conditioned Systems 15
4.12 Problems 155

Chapter 5 Eigenvalues and Eigenvectors 165
5.1 Background 165
5.2 The Characteristic Equation 167
5.3 The Basic Power Method 167
5.4 The Inverse Power Method 172
5.5 The Shifted Power Method 173
5.6 The QR Factorization and Iteration Method 174
5.7 Use of MATLAB Built-In Functions for Determining Eigenvalues and

Eigenvectors 184
5.8 Problems 186

Chapter 6 Curve Fitting and Interpolation 193
6.1 Background 193
6.2 Curve Fitting with a Linear Equation 195

6.2.1 Measuring How Good Is a Fit 195
6.2.2 Linear Least-Squares Regression 197

6.3 Curve Fitting with Nonlinear Equation by Writing the Equation in a Linear Form 201
6.4 Curve Fitting with Quadratic and Higher-Order Polynomials 205
6.5 Interpolation Using a Single Polynomial 210

6.5.1 Lagrange Interpolating Polynomials 212
6.5.2 Newton’s Interpolating Polynomials 216

6.6 Piecewise (Spline) Interpolation 223
6.6.1 Linear Splines 223
6.6.2 Quadratic Splines 225
6.6.3 Cubic Splines 229

6.7 Use of MATLAB Built-In Functions for Curve Fitting and Interpolation 236
6.8 Curve Fitting with a Linear Combination of Nonlinear Functions 238
6.9 Problems 241

Chapter 7 Fourier Methods 251
7.1 Background 251
7.2 Approximating a Square Wave by a Series of Sine Functions 253
7.3 General (Infinite) Fourier Series 257
7.4 Complex Form of the Fourier Series 261

3

xiv Contents

7.5 The Discrete Fourier Series and Discrete Fourier Transform 263
7.6 Complex Discrete Fourier Transform 268
7.7 Power (Energy) Spectrum 271
7.8 Aliasing and Nyquist Frequency 272
7.9 Alternative Forms of the Discrete Fourier Transform 278
7.10 Use of MATLAB Built-In Functions for Calculating Discrete Fourier Transform 278
7.11 Leakage and Windowing 284
7.12 Bandwidth and Filters 286
7.13 The Fast Fourier Transform (FFT) 289
7.14 Problems 298

Chapter 8 Numerical Differentiation 303
8.1 Background 303
8.2 Finite Difference Approximation of the Derivative 305
8.3 Finite Difference Formulas Using Taylor Series Expansion 310

8.3.1 Finite Difference Formulas of First Derivative 310
8.3.2 Finite Difference Formulas for the Second Derivative 315

8.4 Summary of Finite Difference Formulas for Numerical Differentiation 317
8.5 Differentiation Formulas Using Lagrange Polynomials 319
8.6 Differentiation Using Curve Fitting 320
8.7 Use of MATLAB Built-In Functions for Numerical Differentiation 320
8.8 Richardson’s Extrapolation 322
8.9 Error in Numerical Differentiation 325
8.10 Numerical Partial Differentiation 327
8.11 Problems 330

Chapter 9 Numerical Integration 341
9.1 Background 341

9.1.1 Overview of Approaches in Numerical Integration 342
9.2 Rectangle and Midpoint Methods 344
9.3 Trapezoidal Method 346

9.3.1 Composite Trapezoidal Method 347
9.4 Simpson’s Methods 350

9.4.1 Simpson’s 1/3 Method 350
9.4.2 Simpson’s 3/8 Method 353

9.5 Gauss Quadrature 355
9.6 Evaluation of Multiple Integrals 360
9.7 Use of MATLAB Built-In Functions for Integration 362
9.8 Estimation of Error in Numerical Integration 364
9.9 Richardson’s Extrapolation 366

 Contents xv

9.10 Romberg Integration 369
9.11 Improper Integrals 372

9.11.1 Integrals with Singularities 372
9.11.2 Integrals with Unbounded Limits 373

9.12 Problems 374

Chapter 10 Ordinary Differential Equations: Initial-Value
Problems 385

10.1 Background 385
10.2 Euler’s Methods 390

10.2.1 Euler’s Explicit Method 390
10.2.2 Analysis of Truncation Error in Euler’s Explicit Method 394
10.2.3 Euler’s Implicit Method 398

10.3 Modified Euler’s Method 401
10.4 Midpoint Method 404
10.5 Runge–Kutta Methods 405

10.5.1 Second-Order Runge–Kutta Methods 406
10.5.2 Third-Order Runge–Kutta Methods 410
10.5.3 Fourth-Order Runge–Kutta Methods 411

10.6 Multistep Methods 417
10.6.1 Adams–Bashforth Method 418
10.6.2 Adams–Moulton Method 419

10.7 Predictor–Corrector Methods 420
10.8 System of First-Order Ordinary Differential Equations 422

10.8.1 Solving a System of First-Order ODEs Using Euler’s Explicit Method 424
10.8.2 Solving a System of First-Order ODEs Using Second-Order Runge–Kutta Method

(Modified Euler Version) 424
10.8.3 Solving a System of First-Order ODEs Using the Classical Fourth-Order Runge–Kutta

Method 431
10.9 Solving a Higher-Order Initial Value Problem 432
10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems 437

10.10.1 Solving a Single First-Order ODE Using MATLAB 438
10.10.2 Solving a System of First-Order ODEs Using MATLAB 444

10.11 Local Truncation Error in Second-Order Range–Kutta Method 447
10.12 Step Size for Desired Accuracy 448
10.13 Stability 452
10.14 Stiff Ordinary Differential Equations 454
10.15 Problems 457

xvi Contents

Chapter 11 Ordinary Differential Equations: Boundary-Value
Problems 471

11.1 Background 471
11.2 The Shooting Method 474
11.3 Finite Difference Method 482
11.4 Use of MATLAB Built-In Functions for Solving Boundary Value Problems 492
11.5 Error and Stability in Numerical Solution of Boundary Value Problems 497
11.6 Problems 499

Appendix A Introductory MATLAB 509
A.1 Background 509
A.2 Starting with MATLAB 509
A.3 Arrays 514
A.4 Mathematical Operations with Arrays 519
A.5 Script Files 524
A.6 Plotting 526
A.7 User-Defined Functions and Function Files 528
A.8 Anonymous Functions 530
A.9 Function functions 532
A.10 Subfunctions 535
A.11 Programming in MATLAB 537

A.11.1 Relational and Logical Operators 537
A.11.2 Conditional Statements, if-else Structures 538
A.11.3 Loops 541

A.12 Problems 542

Appendix B MATLAB Programs 547

Appendix C Derivation of the Real Discrete Fourier Transform
(DFT) 551

C.1 Orthogonality of Sines and Cosines for Discrete Points 551
C.2 Determination of the Real DFT 553

Index 555

1

Chapter 1
Introduction

1.1 BACKGROUND
Numerical methods are mathematical techniques used for solving math-
ematical problems that cannot be solved or are difficult to solve analyti-
cally. An analytical solution is an exact answer in the form of a
mathematical expression in terms of the variables associated with the
problem that is being solved. A numerical solution is an approximate
numerical value (a number) for the solution. Although numerical solu-
tions are an approximation, they can be very accurate. In many numeri-
cal methods, the calculations are executed in an iterative manner until a
desired accuracy is achieved.

For example, Fig. 1-1 shows a block of mass m being pulled by a
force F applied at an angle �. By applying equations of equilibrium, the
relationship between the force and the angle is given by:

(1.1)

where � is the friction coefficient and g is the acceleration due to grav-
ity. For a given value of F, the angle that is required for moving the
block can be determined by solving Eq. (1.1) for �. Equation (1.1),
however, cannot be solved analytically for �. Using numerical methods,
an approximate solution can be determined for specified accuracy. This
means that when the numerical solution for � is substituted back in Eq.
(1.1), the value of F that is obtained from the expression on the right-
hand side is not exactly equal to the given value of F, but is very close.

Numerical techniques for solving mathematical problems were
developed and used hundreds and even thousands of years ago. Imple-
mentation of the numerical techniques was difficult since the calcula-
tions had to be carried out by hand or by use of simple mechanical

F

q
m

Figure 1-1: Motion of a block on
a surface with friction.

F �mg
�cos � �sin+

---------------------------------=

Core Topics
Representation of numbers on a computer (1.2).
Errors in numerical solutions, round-off errors and
truncation errors (1.3).

Computers and programming (1.4).

2 Chapter 1 Introduction

computing devices, which limited the number of calculations that could
be carried out, as well as their speed and accuracy. Today numerical
methods are used with fast electronic digital computers that make it
possible to execute many tedious and repetitive calculations that pro-
duce accurate (even though not exact) solutions in a very short time.
Solving a problem in science and engineering
The process of solving a problem in science and engineering is influ-
enced by the tools (mathematical methods) that are available for solving
the problem. The process can be divided into the following steps:
Problem statement
The problem statement defines the problem. It gives a description of the
problem, lists the variables that are involved, and identifies the con-
straints in the form of boundary and/or the initial conditions.
Formulation of the solution
Formulation of the solution consists of the model (physical law or laws)
that is used to represent the problem and the derivation of the governing
equations that need to be solved. Examples of such laws are Newton’s
laws, conservations of mass, and the laws of thermodynamics. The
models that are used (chosen) to solve the problem need to be consistent
with the methods that are subsequently used for solving the equations.
If analytical methods are expected to be used for the solution, the gov-
erning equations must be of a type that can be solved analytically. If
needed, the formulation has to be simplified, such that the equations
could be solved analytically. If numerical methods are used for the solu-
tion, the models and the equations can be more complicated. Even then,
however, some limitations might exist. For example, if the formulation
is such that a numerical solution requires a long computing time, the
formulation might have to be simplified such that a solution is obtained
in a reasonable time. An example is weather forecasting. The problem
that is solved is large, and the numerical models that are used are very
complicated. The numerical simulation of the weather, however, cannot
outlast the period over which forecasting is needed.
Programming (of numerical solution)
If the problem is solved numerically, the numerical method that is used
for the solution has to be selected. For every type of mathematical prob-
lem there are several (or many) numerical techniques that can be used.
The techniques differ in accuracy, length of calculations, and difficulty
in programming. Once a numerical method is selected, it is imple-
mented in a computer program. The implementation consists of an
algorithm, which is a detailed plan that describes how to carry out the
numerical method, and a computer program, which is a list of com-
mands that allows the computer to execute the algorithm to find the
solution.

1.1 Background 3

Interpretation of the solution
Since numerical solutions are an approximation (errors are addressed in
Section 1.4), and since the computer program that executes the numeri-
cal method might have errors (or bugs), a numerical solution needs to
be examined closely. This can be done in several ways, depending on
the problem. For example, if the numerical method is used for solving a
nonlinear algebraic equation, the validity of the solution can be verified
by substituting the solution back in the equation. In more complicated
problems, like a solution of a differential equation, the numerical solu-
tion can be compared with a known solution of a similar problem, or the
problem can be solved several times using different boundary (or ini-
tial) conditions, and different numerical methods, and examining the
subsequent differences in the solutions.

An illustration of the first two steps in the solution process of a
problem is shown in Example 1-1.

Example 1-1: Problem formulation

Consider the following problem statement:
A pendulum of mass m is attached to a rigid rod of length L,
as shown in the figure. The pendulum is displaced from the
vertical position such that the angle between the rod and the x
axis is , and then the pendulum is released from rest. For-
mulate the problem for determining the angle � as a function
of time, t, once the pendulum is released. In the formulation
include a damping force that is proportional to the velocity of
the pendulum.
Formulate the solution for two cases:
(a) , and (b) .

SOLUTION

Physical law
The physical law that is used for solving the problem is
Newton’s second law of mechanics, according to which,
as the pendulum swings back and forth, the sum of the
forces that are acting on the mass is equal to the mass
times its acceleration.

(1.2)

This can be visualized by drawing a free body diagram
and a mass acceleration diagram, which are shown on the
right. The constant c is the damping coefficient. It should be pointed out that the mass of the rod is
neglected in the present solution.

 q
 m

 x

 y

 L

 t = 0
�0

�0 5�= �0 90�=

 θ

 T

 FD=cLθ mg

 n
 t

 man=mθ2L n
 t

 mat=mLθ

 FREE BODY
 DIAGRAM

 MASS ACCELERATION
 DIAGRAM

 Newton’s Second Law

�F ma=

4 Chapter 1 Introduction

1.2 REPRESENTATION OF NUMBERS ON A
COMPUTER

Decimal and binary representation
Numbers can be represented in various forms. The familiar decimal sys-
tem (base 10) uses ten digits 0, 1, ..., 9. A number is written by a
sequence of digits that correspond to multiples of powers of 10. As
shown in Fig. 1-2, the first digit to the left of the decimal point corre-

Governing equation
The governing equation is derived by applying Newton’s second law in the tangential direction:

(1.3)

Equation (1.3), which is a second-order, nonlinear, ordinary differential equation, can be written in
the form:

(1.4)

The initial conditions are that when the motion of the pendulum starts (), the pendulum is at
angle and its velocity is zero (released from rest):

 and (1.5)

Method of solution

Equation (1.4) is a nonlinear equation and cannot be solved analytically. However, in part (a) the ini-
tial displacement of the pendulum is , and once the pendulum is released, the angle as the
pendulum oscillates will be less than . For this case, Eq. (1.4) can be linearized by assuming that

. With this approximation, the equation that has to be solved is linear and can be solved ana-
lytically:

(1.6)

with the initial conditions Eq. (1.5).
 In part (b), the initial displacement of the pendulum is and the equation has to be
solved numerically. An actual numerical solution for this problem is shown in Example 8-8.

�Ft cLd�
dt
------– mg �sin– mLd 2�

d t 2
---------= =

mLd 2�
d t 2
--------- cLd�

dt
------ mg �sin+ + 0=

t 0=
�0

� 0� 	 �0= d�
dt

t 0=
0=

�0 5�=
5�

�sin �

mLd 2�
d t 2
--------- cLd�

dt
------ mg �+ + 0=

�0 90�=

104 103 102 101 100 10-1 10-2 10-3 10-4

 6 0 7 2 4 . 3 1 2 5

6 104+ 0 103+ 7 102+ 2 101+ 4 100+ 3 10-1+ 1 10-2+ 2 10-3+ 5 10-4= 60,724.3125

Figure 1-2: Representation of the number 60,724.3125 in the decimal system (base 10).

1.2 Representation of Numbers on a Computer 5

sponds to . The digit next to it on the left corresponds to , the
next digit to the left to , and so on. In the same way, the first digit to
the right of the decimal point corresponds to , the next digit to the
right to , and so on.

In general, however, a number can be represented using other bases.
A form that can be easily implemented in computers is the binary (base
2) system. In the binary system, a number is represented by using the
two digits 0 and 1. A number is then written as a sequence of zeros and
ones that correspond to multiples of powers of 2. The first digit to the
left of the decimal point corresponds to . The digit next to it on the
left corresponds to , the next digit to the left to , and so on. In the
same way, the first digit to the right of the decimal point corresponds to

, the next digit to the right to , and so on. The first ten digits
 in base 10 and their representation in base 2 are shown in

Fig. 1-3. The representation of the number 19.625 in the binary system
is shown in Fig. 1-4.

Another example is shown in Fig. 1-5, where the number
60,724.3125 is written in binary form.

100 101

102

10 1–

10 2–

20

21 22

2 1– 2 2–

1 2 3 � 10� � � �

Base
 10

Base 2

23 22 21 20

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

Figure 1-3: Representation of
numbers in decimal and binary
forms.

24 23 22 21 20 2-1 2-2 2-3

1 0 0 1 1 . 1 0 1

1 24 + 0 23 + 0 22 + 1 21 + 1 20 + 1 2-1 + 0 2-2 + 1 2-3

 1 16 + 0 8 + 0 4 + 1 2 + 1 1 + 1 0.5 + 0 0.25 + 1 0.125 = 19.625
Figure 1-4: Representation of the number 19.625 in the binary system (base 2).

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4

1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1

1 215 + 1 214 + 1 213 + 0 212 + 1 211 + 1 210 + 0 29 + 1 28 + 0 27 + 0 26 + 1 25

+ 1 24 + 0 23 + 1 22 + 0 21 + 0 20 + 0 2-1 + 1 2-2 + 0 2-3 + 1 2-4 = 60,724.3125

Figure 1-5: Representation of the number 60,724.3125 in the binary system (base 2).

6 Chapter 1 Introduction

Computers store and process numbers in binary (base 2) form. Each
binary digit (one or zero) is called a bit (for binary digit). Binary arith-
metic is used by computers because modern transistors can be used as
extremely fast switches. Therefore, a network of these may be used to
represent strings of numbers with the “1” referring to the switch being
in the “on” position and “0” referring to the “off” position. Various
operations are then performed on these sequences of ones and zeros.
Floating point representation
To accommodate large and small numbers, real numbers are written in
floating point representation. Decimal floating point representation
(also called scientific notation) has the form:

. (1.7)
One digit is written to the left of the decimal point, and the rest of the
significant digits are written to the right of the decimal point. The num-
ber 0.dddddd is called the mantissa. Two examples are:

 written as
 written as

The power of 10, p, represents the number’s order of magnitude, pro-
vided the preceding number is smaller than 5. Otherwise, the number is
said to be of the order of . Thus, the number is of the

order of , , and the number is of the order of

 (written as).

Binary floating point representation has the form:

. (b is a decimal digit) (1.8)

In this form, the mantissa is . , and the power of 2 is called the
exponent. Both the mantissa and the exponent are written in a binary
form. The form in Eq. (1.8) is obtained by normalizing the number
(when it is written in the decimal form) with respect to the largest
power of 2 that is smaller than the number itself. For example, to write
the number 50 in binary floating point representation, the number is
divided (and multiplied) by (which is the largest power of 2
that is smaller than 50):

 Binary floating point form:

Two more examples are:

 Binary floating point form:

 Binary floating point form:

d ddddd d 10 p

6519.23 6.51923 103

0.00000391 3.91 10 6–

p 1+ 3.91 10 6–

10 6– O 10 6–� 	 6.51923 103

104 O 104� 	

1 bbbbbb 2 bbb

bbbbbb

25 32=

50 50
25
------ 25 1.5625 25= = 1.1001 2101

1344 1344
210

------------ 210 1.3125 210= = 1.0101 21010

0.3125 0.3125
2 2–

---------------- 2 2– 1.25 2 2–= = 1.01 2 10–

1.2 Representation of Numbers on a Computer 7

Storing a number in computer memory
Once in binary floating point representation, the number is stored in the
computer. The computer stores the values of the exponent and the man-
tissa separately, while the leading 1 in front of the decimal point is not
stored. As already mentioned, a bit is a binary digit. The memory in the
computer is organized in bytes, where each byte is 8 bits. According to
the IEEE1-754 standard (1985), computers store numbers and carry out
calculations in single precision2 or in double precision.3 In single pre-
cision, the numbers are stored in a string of 32 bits (4 bytes), and in
double precision in a string of 64 bits (8 bytes). In both cases the first
bit stores the sign (0 corresponds to + and 1 corresponds to –) of the
number. The next 8 bits in single precision (11 bits in double precision)
are used for storing the exponent. The following 23 bits in single preci-
sion (52 bits in double precision) are used for storing the mantissa. This
is illustrated for double precision in Fig. 1-6.

The value of the mantissa is entered as is in a binary form. The
value of the exponent is entered with a bias. A bias means that a con-
stant is added to the value of the exponent. The bias is introduced in
order to avoid using one of the bits for the sign of the exponent (since
the exponent can be positive or negative). In binary notation, the largest
number that can be written with 11 bits is 2047 (when all 11 digits are
1). The bias that is used is 1023, which means that if, for example, the
exponent is 4, then the value that is stored is . Thus, the

1. IEEE stands for the Institute of Electrical and Electronics Engineers.
2. Precision refers to the number of significant digits of a real number that can be

stored on a computer. For example, the number 1/3 = 0.333333... can be represented
on a computer only in a chopped or rounded form with a finite number of binary dig-
its, since the amount of memory where these bits are held is finite. The more digits
to the right-hand side of the decimal point that are stored, the more precise is the
representation of the real number on the computer.

3. This is somewhat of a misnomer. The precision in a double-precision number is not
really doubled compared to a single-precision number. Rather, the “double” in dou-
ble precision refers to the fact that twice as many binary digits (64 versus 32) are
used to represent a real number than in the case of a single-precision representation.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1.

Exponent + bias
 11 bits

Mantissa
 52 bits

Sign
1 bit

2021210 29 28 2-1 2-2 2-3 2-50 2-51 2-52

Figure 1-6: Storing in double precision a number written in binary floating point representation.

4 1023+ 1027=

8 Chapter 1 Introduction

smallest exponent that can be stored by the computer is , and the
largest is 1024 (which will be stored as 2047). However, the smallest
and largest values of the exponent plus bias are reserved for zero and
infinity (Inf) or not-a-number (NaN) due to invalid mathematical
operation. The 11 bits for the exponent plus bias store values between

 and 1024. If the exponent plus bias and mantissa are both zero,
then the number actually stored is 0. If the exponent plus bias is 2047
the number stored is Inf if the mantissa is zero, and it is NaN if the
mantissa is not zero. In single precision, 8 bits are allocated to the value
of the exponent and the bias is 127.

As an example, consider storing of the number 22.5 in double preci-
sion according to the IEEE-754 standard. First, the number is normal-

ized: . In double precision, the exponent with the

bias is , which is stored in binary form as 10000000011.
The mantissa is 0.40625, which is stored in binary form as
.01101000....000. The storage of the number is illustrated in Fig. 1-7.

Additional notes

• The smallest positive number that can be expressed in double preci-
sion is:

This means that there is a (small) gap between zero and the smallest
number that can be stored on the computer. Attempts to define a
number in this gap causes an underflow error. (In the same way, the
closest negative number to zero is .)

• The largest positive number that can be expressed in double preci-
sion is approximately:

Attempts to define a larger number causes overflow error. (The same
applies to numbers smaller than .)

The range of numbers that can be represented in double precision is
shown in Fig. 1-8.

1023–

1023–

22.5
24

----------24 1.40625 24=

4 1023+ 1027=

0

Exponent + bias
 11 bits

Mantissa
 52 bits

Sign
1 bit

0 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1-7: Storing the number 22.5 in double precision according to the IEEE-754 standard.

2 1022– 2.2 10 308–

2.2 10 308––

21024 1.8 10308

2– 1024

1.2 Representation of Numbers on a Computer 9

• Since a finite number of bits is used, not every number can be accu-
rately written in binary form. In other words, only a finite number of
exact values in decimal format can be stored in binary form. For
example, the number 0.1 cannot be represented exactly in finite
binary format when single precision is used. To be written in binary
floating point representation, 0.1 is normalized: . The
exponent -4 (with a bias) can be stored exactly, but the mantissa 0.6
cannot be written exactly in a binary format that uses 23 bits. In
addition, irrational numbers cannot be represented exactly in any
format. This means that, in many cases, exact values are approxi-
mated. The errors that are introduced are small in one step, but when
many operations are executed, the errors can grow to such an extent
that the final answer is affected. These errors, as well as other errors,
are discussed in the next section.

• The interval between numbers that can be represented depends on
their magnitude. In double precision, the smallest value of the man-
tissa that can be stored is . This is also the smallest
possible difference in the mantissa between two numbers. The mag-
nitude of the real number that is associated with this mantissa, how-
ever, depends on the exponent. For numbers of the order of 1, the
smallest difference between two numbers that can be represented in
double precision is then . This value is also defined as
the machine epsilon in double precision. In MATLAB this value is
assigned to the predefined variable eps. As shown below, when the
name of the variable eps is typed (Command Window), the assigned
value is displayed.

>> eps

ans =

 2.220446049250313e-016

Range of numbers that
 can be represented

(+)() 0

~2.2 10-308~ -2.2 10-308 ~1.8 10308~ -1.8 10308

Range of numbers that
 can be representedUnderflow

Overflow Overflow

Figure 1-8: Range of numbers that can be represented in double precision.

0.1 1.6 2 4–=

2 52– 2.22 10 16–

2.22 10 16–

